These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15957747)

  • 1. Influence of viscosity on the diffraction of sound by a periodic array of screens.
    Homentcovschi D; Miles RN; Tan L
    J Acoust Soc Am; 2005 May; 117(5):2761-71. PubMed ID: 15957747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of viscosity on the reflection and transmission of an acoustic wave by a periodic array of screens. The general 3-D problem.
    Homentcovschi D; Miles RN
    Wave Motion; 2008 Jan; 45(3):191-206. PubMed ID: 19122753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.
    Caliendo C; Hamidullah M
    Biosensors (Basel); 2016 Dec; 6(4):. PubMed ID: 27918419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscous scattering of a pressure wave: calculation of the fluid tractions on a biomimetic acoustic velocity sensor.
    Homentcovschi D; Miles RN
    J Acoust Soc Am; 2006 Feb; 119(2):777-87. PubMed ID: 16521738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of viscosity on the diffraction of sound by a circular aperture in a plane screen.
    Davis AM; Nagem RJ
    J Acoust Soc Am; 2003 Jun; 113(6):3080-90. PubMed ID: 12822780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of viscous damping of perforated planar microstructures. Applications in acoustics.
    Homentcovschi D; Miles RN
    J Acoust Soc Am; 2004 Nov; 116(5):2939-47. PubMed ID: 15603140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.
    Cutanda-Henríquez V; Juhl PM
    J Acoust Soc Am; 2013 Nov; 134(5):3409-18. PubMed ID: 24180751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.
    Otevrel M; Klepárník K
    Electrophoresis; 2002 Oct; 23(20):3574-82. PubMed ID: 12412127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary streaming with Navier boundary condition.
    Xie JH; Vanneste J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063010. PubMed ID: 25019882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.
    Joseph DD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14272-7. PubMed ID: 16983077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streaming potential of superhydrophobic microchannels.
    Park HM; Kim D; Kim SY
    Electrophoresis; 2017 Mar; 38(5):689-701. PubMed ID: 27935097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of momentum in a viscous compressible fluid due to no-slip boundary condition at one or two planar walls.
    Felderhof BU
    J Chem Phys; 2010 Aug; 133(7):074707. PubMed ID: 20726663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microacoustic analysis including viscosity and thermal conductivity to model the effect of the protective cap on the acoustic response of a MEMS microphone.
    Homentcovschi D; Miles RN; Loeppert PV; Zuckerwar AJ
    Microsyst Technol; 2014 Feb; 20(2):265-272. PubMed ID: 24701031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscous compressible hydrodynamics at planes, spheres and cylinders with finite surface slip.
    Erbaş A; Podgornik R; Netz RR
    Eur Phys J E Soft Matter; 2010 Jun; 32(2):147-64. PubMed ID: 20632199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analyses and numerical simulations of the torsional mode for two acoustic viscometers with preliminary experimental tests.
    Ai Y; Lange RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):648-58. PubMed ID: 18407854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictions and measurements of sound transmission through a periodic array of elastic shells in air.
    Krynkin A; Umnova O; Yung Boon Chong A; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2010 Dec; 128(6):3496-506. PubMed ID: 21218882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.