These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15957785)

  • 1. Medial surface dynamics of an in vivo canine vocal fold during phonation.
    Döllinger M; Berry DA; Berke GS
    J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical Eigenfunctions and medial surface dynamics of a human vocal fold.
    Döllinger M; Tayama N; Berry DA
    Methods Inf Med; 2005; 44(3):384-91. PubMed ID: 16113761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation.
    Doellinger M; Berry DA
    J Voice; 2006 Sep; 20(3):401-13. PubMed ID: 16300925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of Vocal Fold Medial Surface 3D Trajectories: Effects of Neuromuscular Stimulation and Airflow.
    Schlegel P; Chung HR; Döllinger M; Chhetri DK
    Laryngoscope; 2024 Mar; 134(3):1249-1257. PubMed ID: 37672673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed digital imaging of the medial surface of the vocal folds.
    Berry DA; Montequin DW; Tayama N
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2539-47. PubMed ID: 11757943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of superior laryngeal nerve on vocal fold function: an in vivo canine model.
    Slavit DH; McCaffrey TV; Yanagi E
    Otolaryngol Head Neck Surg; 1991 Dec; 105(6):857-63. PubMed ID: 1787976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histologic Examination of Vocal Fold Mucosal Wave and Vibration.
    Chung HR; Reddy NK; Manzoor D; Schlegel P; Zhang Z; Chhetri DK
    Laryngoscope; 2024 Jan; 134(1):264-271. PubMed ID: 37522475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex vivo perfused larynx model of phonation: preliminary study.
    Berke GS; Neubauer J; Berry DA; Ye M; Chhetri DK
    Ann Otol Rhinol Laryngol; 2007 Nov; 116(11):866-70. PubMed ID: 18074674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal chaos in excised larynx vibrations.
    Zhang Y; Jiang JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035201. PubMed ID: 16241503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of the interarytenoid muscle in a canine laryngeal model.
    Nasri S; Beizai P; Sercarz JA; Kreiman J; Graves MC; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Dec; 103(12):975-82. PubMed ID: 7993010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.