These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15957798)

  • 1. Comparison of measurements of phase velocity in human calcaneus to Biot theory.
    Wear KA; Laib A; Stuber AP; Reynolds JC
    J Acoust Soc Am; 2005 May; 117(5):3319-24. PubMed ID: 15957798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone.
    Lee KI; Humphrey VF; Leighton TG; Yoon SW
    Ultrasonics; 2007 Nov; 46(4):323-30. PubMed ID: 17573089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties.
    Pakula M; Padilla F; Laugier P; Kaczmarek M
    J Acoust Soc Am; 2008 Apr; 123(4):2415-23. PubMed ID: 18397044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of ultrasonic waves through demineralized cancellous bone.
    Mohamed MM; Shaat LT; Mahmoud AN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):279-88. PubMed ID: 12699161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group velocity, phase velocity, and dispersion in human calcaneus in vivo.
    Wear KA
    J Acoust Soc Am; 2007 Apr; 121(4):2431-7. PubMed ID: 17471754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabric dependence of bone ultrasound.
    Cowin SC; Cardoso L
    Acta Bioeng Biomech; 2010; 12(2):3-23. PubMed ID: 20882938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory.
    Williams JL
    J Acoust Soc Am; 1992 Feb; 91(2):1106-12. PubMed ID: 1556311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method.
    Yang D
    Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabric dependence of wave propagation in anisotropic porous media.
    Cowin SC; Cardoso L
    Biomech Model Mechanobiol; 2011 Feb; 10(1):39-65. PubMed ID: 20461539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.
    Wear KA
    J Acoust Soc Am; 2013 Apr; 133(4):2490-501. PubMed ID: 23556613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency dependence of average phase shift from human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2009 Dec; 126(6):3291-300. PubMed ID: 20000943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The speed of sound through trabecular bone predicted by Biot theory.
    Yoon YJ; Chung JP; Bae CS; Han SY
    J Biomech; 2012 Feb; 45(4):716-8. PubMed ID: 22244093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear acoustic waves in porous media in the context of Biot's theory.
    Donskoy DM; Khashanah K; McKee TG
    J Acoust Soc Am; 1997 Nov; 102(5 Pt 1):2521-8. PubMed ID: 11536846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.