BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 15958175)

  • 1. Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform.
    Rothert A; Deo SK; Millner L; Puckett LG; Madou MJ; Daunert S
    Anal Biochem; 2005 Jul; 342(1):11-9. PubMed ID: 15958175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel reporter gene in a fluorescent-based whole cell sensing system.
    Feliciano J; Liu Y; Daunert S
    Biotechnol Bioeng; 2006 Apr; 93(5):989-97. PubMed ID: 16489629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors.
    Hakkila K; Maksimow M; Karp M; Virta M
    Anal Biochem; 2002 Feb; 301(2):235-42. PubMed ID: 11814294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxylated polychlorinated biphenyl detection based on a genetically engineered bioluminescent whole-cell sensing system.
    Turner K; Xu S; Pasini P; Deo S; Bachas L; Daunert S
    Anal Chem; 2007 Aug; 79(15):5740-5. PubMed ID: 17602671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples.
    Buffi N; Merulla D; Beutier J; Barbaud F; Beggah S; van Lintel H; Renaud P; van der Meer JR
    Lab Chip; 2011 Jul; 11(14):2369-77. PubMed ID: 21614381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms.
    Date A; Pasini P; Daunert S
    Anal Bioanal Chem; 2010 Sep; 398(1):349-56. PubMed ID: 20582692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosensing systems for the detection of bacterial quorum signaling molecules.
    Kumari A; Pasini P; Deo SK; Flomenhoft D; Shashidhar H; Daunert S
    Anal Chem; 2006 Nov; 78(22):7603-9. PubMed ID: 17105149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria.
    Ramanathan S; Shi W; Rosen BP; Daunert S
    Anal Chem; 1997 Aug; 69(16):3380-4. PubMed ID: 9271073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-based sensing system for copper using genetically engineered living yeast cells.
    Shetty RS; Deo SK; Liu Y; Daunert S
    Biotechnol Bioeng; 2004 Dec; 88(5):664-70. PubMed ID: 15515160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid whole-cell sensing chip for low-level arsenite detection.
    Chiou CH; Chien LJ; Chou TC; Lin JL; Tseng JT
    Biosens Bioelectron; 2011 Jan; 26(5):2484-8. PubMed ID: 21112203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the metalloactivation domain of an arsenite/antimonite resistance pump.
    Ruan X; Bhattacharjee H; Rosen BP
    Mol Microbiol; 2008 Jan; 67(2):392-402. PubMed ID: 18067540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis.
    Date A; Pasini P; Sangal A; Daunert S
    Anal Chem; 2010 Jul; 82(14):6098-103. PubMed ID: 20560542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules.
    Struss A; Pasini P; Ensor CM; Raut N; Daunert S
    Anal Chem; 2010 Jun; 82(11):4457-63. PubMed ID: 20465229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of spores for portable bacterial whole-cell biosensing systems.
    Date A; Pasini P; Daunert S
    Anal Chem; 2007 Dec; 79(24):9391-7. PubMed ID: 18020369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole cell biosensing via recA::mCherry and LED-based flow-through fluorometry.
    Martineau RL; Stout V; Towe BC
    Biosens Bioelectron; 2009 Dec; 25(4):759-66. PubMed ID: 19800215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic analysis of antibody specificity in a compact disk format.
    Eriksson C; Agaton C; Kånge R; Sundberg M; Nilsson P; Ek B; Uhlén M; Gustafsson M; Hober S
    J Proteome Res; 2006 Jul; 5(7):1568-74. PubMed ID: 16823963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Rhodovulum sulfidophilum as an arsenite biosensor.
    Fujimoto H; Wakabayashi M; Yamashiro H; Maeda I; Isoda K; Kondoh M; Kawase M; Miyasaka H; Yagi K
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):332-8. PubMed ID: 16733729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic.
    Tani C; Inoue K; Tani Y; Harun-ur-Rashid M; Azuma N; Ueda S; Yoshida K; Maeda I
    J Biosci Bioeng; 2009 Nov; 108(5):414-20. PubMed ID: 19804866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical tracking of a stress-responsive gene amplifier applied to cell-based biosensing and the study of synthetic architectures.
    Martineau RL; Stout V; Towe BC
    Biosens Bioelectron; 2010 Apr; 25(8):1881-8. PubMed ID: 20149630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.
    Ordóñez E; Letek M; Valbuena N; Gil JA; Mateos LM
    Appl Environ Microbiol; 2005 Oct; 71(10):6206-15. PubMed ID: 16204540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.