These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15958195)

  • 1. Differentiation between amplicon polymerization and nonspecific products in SYBR green I real-time polymerase chain reaction.
    Weng T; Jin N; Liu L
    Anal Biochem; 2005 Jul; 342(1):167-9. PubMed ID: 15958195
    [No Abstract]   [Full Text] [Related]  

  • 2. Lab assembly of a low-cost, robust SYBR green buffer system for quantitative real-time polymerase chain reaction.
    Pellissier F; Glogowski CM; Heinemann SF; Ballivet M; Ossipow V
    Anal Biochem; 2006 Mar; 350(2):310-2. PubMed ID: 16434019
    [No Abstract]   [Full Text] [Related]  

  • 3. New unsymmetrical cyanine dyes for real-time thermal cycling.
    Ahmad AI; Ghasemi JB
    Anal Bioanal Chem; 2007 Oct; 389(3):983-8. PubMed ID: 17673983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of copy number using SYBR Green: confounding by AT-rich DNA and by variation in amplicon length.
    Colborn JM; Byrd BD; Koita OA; Krogstad DJ
    Am J Trop Med Hyg; 2008 Dec; 79(6):887-92. PubMed ID: 19052298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The source of SYBR green master mix determines outcome of nucleic acid amplification reactions.
    Yang J; Kemps-Mols B; Spruyt-Gerritse M; Anholts J; Claas F; Eikmans M
    BMC Res Notes; 2016 Jun; 9():292. PubMed ID: 27259280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP).
    Oscorbin IP; Belousova EA; Zakabunin AI; Boyarskikh UA; Filipenko ML
    Biotechniques; 2016; 61(1):20-5. PubMed ID: 27401670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the SYBR Green and the hybridization probe format for real-time PCR detection of HHV-6.
    Fernández F; Gutiérrez J; Sorlózano A; Romero JM; Soto MJ; Ruiz-Cabello F
    Microbiol Res; 2006; 161(2):158-63. PubMed ID: 16427520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced resonance Raman scattering (SERRS) simulates PCR for sensitive DNA detection.
    Zhou H; Lin S; Nie Y; Yang D; Wang Q; Chen W; Huang N; Jiang Z; Chen S
    Analyst; 2015 Nov; 140(22):7518-21. PubMed ID: 26465756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaption of SYBR Green-based reagent kit for real-time PCR quantitation of GC-rich DNA.
    Chang GJ; Seyfert HM; Shen XZ
    Genet Mol Res; 2015 Jul; 14(3):8509-15. PubMed ID: 26345780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Making it real" time.
    Vrana KE
    Biotechniques; 2013 Jun; 54(6):312-3. PubMed ID: 23905171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature.
    Gudnason H; Dufva M; Bang DD; Wolff A
    Nucleic Acids Res; 2007; 35(19):e127. PubMed ID: 17897966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.
    Hernández M; Rodríguez-Lázaro D; Esteve T; Prat S; Pla M
    Anal Biochem; 2003 Dec; 323(2):164-70. PubMed ID: 14656521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replication kinetics for divergent type 1 human immunodeficiency viruses using quantitative SYBR green I real-time polymerase chain reaction.
    Victoria JG; Lee DJ; McDougall BR; Robinson WE
    AIDS Res Hum Retroviruses; 2003 Oct; 19(10):865-74. PubMed ID: 14585218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis.
    Monis PT; Giglio S; Saint CP
    Anal Biochem; 2005 May; 340(1):24-34. PubMed ID: 15802126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addition of gold nanoparticles to real-time PCR: effect on PCR profile and SYBR Green I fluorescence.
    Haber AL; Griffiths KR; Jamting AK; Emslie KR
    Anal Bioanal Chem; 2008 Nov; 392(5):887-96. PubMed ID: 18791860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing.
    Haines AM; Tobe SS; Kobus HJ; Linacre A
    Electrophoresis; 2015 Oct; 36(20):2561-8. PubMed ID: 26202628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time PCR fluorescent chemistries.
    Mackay J; Landt O
    Methods Mol Biol; 2007; 353():237-61. PubMed ID: 17332645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous fluorescence monitoring of rapid cycle DNA amplification. 1997.
    Wittwer CT; Herrmann MG; Moss AA; Rasmussen RP
    Biotechniques; 2013 Jun; 54(6):314-20. PubMed ID: 23905170
    [No Abstract]   [Full Text] [Related]  

  • 19. Detection of microRNA in clinical tumor samples by isothermal enzyme-free amplification and label-free graphene oxide-based SYBR Green I fluorescence platform.
    Zhu D; Zhang L; Ma W; Lu S; Xing X
    Biosens Bioelectron; 2015 Mar; 65():152-8. PubMed ID: 25461151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced detection of multiplex PCR products using SYBR Green I and an automated DNA sequencer.
    Perkins EJ
    Biotechniques; 2001 Aug; 31(2):278-80, 282. PubMed ID: 11515361
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.