These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15958222)

  • 1. Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking.
    Fellows RA; Hill NA; Gill HS; MacIntyre NJ; Harrison MM; Ellis RE; Wilson DR
    J Biomech; 2005 Aug; 38(8):1643-52. PubMed ID: 15958222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeatability of a novel technique for in vivo measurement of three-dimensional patellar tracking using magnetic resonance imaging.
    Fellows RA; Hill NA; Macintyre NJ; Harrison MM; Ellis RE; Wilson DR
    J Magn Reson Imaging; 2005 Jul; 22(1):145-53. PubMed ID: 15971173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency of patellar spin, tilt and lateral translation side-to-side and over a 1 year period in healthy young males.
    Macintyre NJ; McKnight EK; Day A; Wilson DR
    J Biomech; 2008 Oct; 41(14):3094-6. PubMed ID: 18757059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single measure of patellar kinematics is an inadequate surrogate marker for patterns of three-dimensional kinematics in healthy knees.
    McWalter EJ; Macintyre NJ; Cibere J; Wilson DR
    Knee; 2010 Mar; 17(2):135-40. PubMed ID: 19720534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques.
    Tang TS; MacIntyre NJ; Gill HS; Fellows RA; Hill NA; Wilson DR; Ellis RE
    Med Image Anal; 2004 Sep; 8(3):343-51. PubMed ID: 15450227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging.
    Sangeux M; Marin F; Charleux F; Dürselen L; Ho Ba Tho MC
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):984-91. PubMed ID: 16844273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of load magnitude on three-dimensional patellar kinematics in vivo.
    McWalter EJ; Hunter DJ; Wilson DR
    J Biomech; 2010 Jul; 43(10):1890-7. PubMed ID: 20413124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of patellar tracking: assessment and analysis of the literature.
    Katchburian MV; Bull AM; Shih YF; Heatley FW; Amis AA
    Clin Orthop Relat Res; 2003 Jul; (412):241-59. PubMed ID: 12838076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of patellar tracking in total knee arthroplasty.
    Anglin C; Brimacombe JM; Hodgson AJ; Masri BA; Greidanus NV; Tonetti J; Wilson DR
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):900-10. PubMed ID: 18522864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative positions of the contacts on the cartilage surfaces of the knee joint.
    Walker PS; Yildirim G; Sussman-Fort J; Klein GR
    Knee; 2006 Oct; 13(5):382-8. PubMed ID: 16790353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome.
    MacIntyre NJ; Hill NA; Fellows RA; Ellis RE; Wilson DR
    J Bone Joint Surg Am; 2006 Dec; 88(12):2596-605. PubMed ID: 17142409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance imaging of in vivo patellofemoral kinematics after total knee arthroplasty.
    Carpenter RD; Brilhault J; Majumdar S; Ries MD
    Knee; 2009 Oct; 16(5):332-6. PubMed ID: 19188068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study.
    Seisler AR; Sheehan FT
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1333-41. PubMed ID: 17605365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardisation of the description of patellofemoral motion and comparison between different techniques.
    Bull AM; Katchburian MV; Shih YF; Amis AA
    Knee Surg Sports Traumatol Arthrosc; 2002 May; 10(3):184-93. PubMed ID: 12012037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of soft structures on patellar three-dimensional tracking.
    Heegaard J; Leyvraz PF; Van Kampen A; Rakotomanana L; Rubin PJ; Blankevoort L
    Clin Orthop Relat Res; 1994 Feb; (299):235-43. PubMed ID: 8119024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint.
    von Eisenhart-Rothe R; Siebert M; Bringmann C; Vogl T; Englmeier KH; Graichen H
    J Biomech; 2004 Jun; 37(6):927-34. PubMed ID: 15111080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of patella alta on knee extensor mechanics.
    Ward SR; Terk MR; Powers CM
    J Biomech; 2005 Dec; 38(12):2415-22. PubMed ID: 16214489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.