BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15958225)

  • 1. A homogenization model of the annulus fibrosus.
    Yin L; Elliott DM
    J Biomech; 2005 Aug; 38(8):1674-84. PubMed ID: 15958225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.
    Nerurkar NL; Elliott DM; Mauck RL
    J Orthop Res; 2007 Aug; 25(8):1018-28. PubMed ID: 17457824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single lamellar mechanics of the human lumbar anulus fibrosus.
    Holzapfel GA; Schulze-Bauer CA; Feigl G; Regitnig P
    Biomech Model Mechanobiol; 2005 Mar; 3(3):125-40. PubMed ID: 15778871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.
    Guerin HL; Elliott DM
    J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load.
    Guerin HA; Elliott DM
    J Biomech; 2006; 39(8):1410-8. PubMed ID: 15950233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and model determination of human intervertebral disc osmoviscoelasticity.
    Schroeder Y; Elliott DM; Wilson W; Baaijens FP; Huyghe JM
    J Orthop Res; 2008 Aug; 26(8):1141-6. PubMed ID: 18327799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear mechanical properties of human lumbar annulus fibrosus.
    Iatridis JC; Kumar S; Foster RJ; Weidenbaum M; Mow VC
    J Orthop Res; 1999 Sep; 17(5):732-7. PubMed ID: 10569484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus.
    Wagner DR; Lotz JC
    J Orthop Res; 2004 Jul; 22(4):901-9. PubMed ID: 15183453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain transfer in the annulus fibrosus under applied flexion.
    Desrochers J; Duncan NA
    J Biomech; 2010 Aug; 43(11):2141-8. PubMed ID: 20478561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads.
    Schmidt H; Heuer F; Wilke HJ
    Med Eng Phys; 2009 Jul; 31(6):642-9. PubMed ID: 19196536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions.
    Wagner DR; Reiser KM; Lotz JC
    J Biomech; 2006; 39(6):1021-9. PubMed ID: 15878594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs.
    Chuang SY; Odono RM; Hedman TP
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):14-20. PubMed ID: 17005305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of stress and strain in the interosseous ligament of the forearm based on fiber network theory.
    Pfaeffle HJ; Fischer KJ; Srinivasa A; Manson T; Woo SL; Tomaino M
    J Biomech Eng; 2006 Oct; 128(5):725-32. PubMed ID: 16995759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads.
    Yao J; Turteltaub SR; Ducheyne P
    Biomaterials; 2006 Jan; 27(3):377-87. PubMed ID: 16168476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus.
    Schmidt H; Heuer F; Simon U; Kettler A; Rohlmann A; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):337-44. PubMed ID: 16439042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability.
    Périé D; Korda D; Iatridis JC
    J Biomech; 2005 Nov; 38(11):2164-71. PubMed ID: 16154403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent.
    Fujita Y; Duncan NA; Lotz JC
    J Orthop Res; 1997 Nov; 15(6):814-9. PubMed ID: 9497805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.