BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 15958262)

  • 1. HERG mutation predicts short QT based on channel kinetics but causes long QT by heterotetrameric trafficking deficiency.
    Paulussen AD; Raes A; Jongbloed RJ; Gilissen RA; Wilde AA; Snyders DJ; Smeets HJ; Aerssens J
    Cardiovasc Res; 2005 Aug; 67(3):467-75. PubMed ID: 15958262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and subcellular localization of KCNQ1 with a heterozygous mutation in the C terminus.
    Yamashita F; Horie M; Kubota T; Yoshida H; Yumoto Y; Kobori A; Ninomiya T; Kono Y; Haruna T; Tsuji K; Washizuka T; Takano M; Otani H; Sasayama S; Aizawa Y
    J Mol Cell Cardiol; 2001 Feb; 33(2):197-207. PubMed ID: 11162126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [HERG K+ channel, the target of anti-arrhythmias drugs].
    Guan FY; Yang SJ
    Yao Xue Xue Bao; 2007 Jul; 42(7):687-91. PubMed ID: 17882949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-[2-(3,4-dichloro-phenyl)-2,3-dihydro-1H-isoindol-5-ylamino]-nicotinic acid (PD-307243) causes instantaneous current through human ether-a-go-go-related gene potassium channels.
    Gordon E; Lozinskaya IM; Lin Z; Semus SF; Blaney FE; Willette RN; Xu X
    Mol Pharmacol; 2008 Mar; 73(3):639-51. PubMed ID: 18042732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6.
    Lu Y; Mahaut-Smith MP; Huang CL; Vandenberg JI
    J Physiol; 2003 Aug; 551(Pt 1):253-62. PubMed ID: 12923204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HERG-F463L potassium channels linked to long QT syndrome reduce I(Kr) current by a trafficking-deficient mechanism.
    Yang HT; Sun CF; Cui CC; Xue XL; Zhang AF; Li HB; Wang DQ; Shu J
    Clin Exp Pharmacol Physiol; 2009 Aug; 36(8):822-7. PubMed ID: 19215240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel KCNE3 mutation reduces repolarizing potassium current and associated with long QT syndrome.
    Ohno S; Toyoda F; Zankov DP; Yoshida H; Makiyama T; Tsuji K; Honda T; Obayashi K; Ueyama H; Shimizu W; Miyamoto Y; Kamakura S; Matsuura H; Kita T; Horie M
    Hum Mutat; 2009 Apr; 30(4):557-63. PubMed ID: 19306396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical and electrophysiological characterization of a novel mutation (F193L) in the KCNQ1 gene associated with long QT syndrome.
    Yamaguchi M; Shimizu M; Ino H; Terai H; Hayashi K; Mabuchi H; Hoshi N; Higashida H
    Clin Sci (Lond); 2003 Apr; 104(4):377-82. PubMed ID: 12653681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DHPLC analysis of potassium ion channel genes in congenital long QT syndrome.
    Jongbloed R; Marcelis C; Velter C; Doevendans P; Geraedts J; Smeets H
    Hum Mutat; 2002 Nov; 20(5):382-91. PubMed ID: 12402336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking.
    Wang L; Wible BA; Wan X; Ficker E
    J Pharmacol Exp Ther; 2007 Feb; 320(2):525-34. PubMed ID: 17095614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common antitussive drug, clobutinol, precipitates the long QT syndrome 2.
    Bellocq C; Wilders R; Schott JJ; Louérat-Oriou B; Boisseau P; Le Marec H; Escande D; Baró I
    Mol Pharmacol; 2004 Nov; 66(5):1093-102. PubMed ID: 15280442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Molecular genetics of the long QT syndrome: clinical aspects].
    Sepp R; Csanády M
    Orv Hetil; 1999 Nov; 140(47):2633-8. PubMed ID: 10613047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tbx20 controls the expression of the KCNH2 gene and of hERG channels.
    Caballero R; Utrilla RG; Amorós I; Matamoros M; Pérez-Hernández M; Tinaquero D; Alfayate S; Nieto-Marín P; Guerrero-Serna G; Liu QH; Ramos-Mondragón R; Ponce-Balbuena D; Herron T; Campbell KF; Filgueiras-Rama D; Peinado R; López-Sendón JL; Jalife J; Delpón E; Tamargo J
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):E416-E425. PubMed ID: 28049825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional effects of a KCNQ1 mutation associated with the long QT syndrome.
    Boulet IR; Raes AL; Ottschytsch N; Snyders DJ
    Cardiovasc Res; 2006 Jun; 70(3):466-74. PubMed ID: 16564513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long QT syndrome in neonates: conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations.
    Lupoglazoff JM; Denjoy I; Villain E; Fressart V; Simon F; Bozio A; Berthet M; Benammar N; Hainque B; Guicheney P
    J Am Coll Cardiol; 2004 Mar; 43(5):826-30. PubMed ID: 14998624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The variant hERG/R148W associated with LQTS is a mutation that reduces current density on co-expression with the WT.
    Mechakra A; Vincent Y; Chevalier P; Millat G; Ficker E; Jastrzebski M; Poulin H; Pouliot V; Chahine M; Christé G
    Gene; 2014 Feb; 536(2):348-56. PubMed ID: 24334129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent inhibition of human cardiac potassium (HERG) channels by the anti-estrogen agent clomiphene-without QT interval prolongation.
    Yuill KH; Borg JJ; Ridley JM; Milnes JT; Witchel HJ; Paul AA; Kozlowski RZ; Hancox JC
    Biochem Biophys Res Commun; 2004 May; 318(2):556-61. PubMed ID: 15120636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome.
    Ikrar T; Hanawa H; Watanabe H; Okada S; Aizawa Y; Ramadan MM; Komura S; Yamashita F; Chinushi M; Aizawa Y
    J Cardiovasc Electrophysiol; 2008 May; 19(5):541-9. PubMed ID: 18266681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrophobicity-dependent motif responsible for surface expression of cardiac potassium channel.
    Pan N; Sun J; Lv C; Li H; Ding J
    Cell Signal; 2009 Feb; 21(2):349-55. PubMed ID: 19041715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant-negative I(Ks) suppression by KCNQ1-deltaF339 potassium channels linked to Romano-Ward syndrome.
    Thomas D; Wimmer AB; Karle CA; Licka M; Alter M; Khalil M; Ulmer HE; Kathöfer S; Kiehn J; Katus HA; Schoels W; Koenen M; Zehelein J
    Cardiovasc Res; 2005 Aug; 67(3):487-97. PubMed ID: 15950200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.