These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 15958263)
41. Potassium augments vascular relaxation mediated by nitric oxide in the carotid arteries of hypertensive Dahl rats. Zhou MS; Kosaka H; Yoneyama H Am J Hypertens; 2000 Jun; 13(6 Pt 1):666-72. PubMed ID: 10912751 [TBL] [Abstract][Full Text] [Related]
42. Endothelium-dependent and -independent vasodilator effects of eugenol in the rat mesenteric vascular bed. Criddle DN; Madeira SV; Soares de Moura R J Pharm Pharmacol; 2003 Mar; 55(3):359-65. PubMed ID: 12724042 [TBL] [Abstract][Full Text] [Related]
43. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. McCulloch AI; Randall MD Br J Pharmacol; 1998 Apr; 123(8):1700-6. PubMed ID: 9605578 [TBL] [Abstract][Full Text] [Related]
44. Mechanisms underlying the impaired EDHF-type relaxation response in mesenteric arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Matsumoto T; Kobayashi T; Kamata K Eur J Pharmacol; 2006 May; 538(1-3):132-40. PubMed ID: 16678154 [TBL] [Abstract][Full Text] [Related]
45. Prolonged effect of a novel S-nitrosated glyco-amino acid in endothelium-denuded rat femoral arteries: potential as a slow release nitric oxide donor drug. Megson IL; Greig IR; Gray GA; Webb DJ; Butler AR Br J Pharmacol; 1997 Dec; 122(8):1617-24. PubMed ID: 9422806 [TBL] [Abstract][Full Text] [Related]
46. Regional differences in nitric oxide-dependent vascular responses to somatostatin. Dézsi L; Szentiványi M; Dörnyei G; Löwenstein L; Faragó M; Tulassay T; Monos E Physiol Res; 1996; 45(4):291-6. PubMed ID: 9085352 [TBL] [Abstract][Full Text] [Related]
47. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries. McIntyre CA; Buckley CH; Jones GC; Sandeep TC; Andrews RC; Elliott AI; Gray GA; Williams BC; McKnight JA; Walker BR; Hadoke PW Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664 [TBL] [Abstract][Full Text] [Related]
48. Differential effects of ouabain on the vasodilator actions of nitric oxide and S-nitrosothiols in vivo: relevance to the identity of EDRF/EDHF. Lewis SJ; Travis MD; Hashmi-Hill MP; Sandock K; Robertson TP; Bates JN Vascul Pharmacol; 2006 Dec; 45(6):383-94. PubMed ID: 16861050 [TBL] [Abstract][Full Text] [Related]
49. Involvement of H2O2 in superoxide-dismutase-induced enhancement of endothelium-dependent relaxation in rabbit mesenteric resistance artery. Itoh T; Kajikuri J; Hattori T; Kusama N; Yamamoto T Br J Pharmacol; 2003 May; 139(2):444-56. PubMed ID: 12770950 [TBL] [Abstract][Full Text] [Related]
50. Role of mitogen-activated protein kinase pathway in acetylcholine-mediated in vitro relaxation of rat pulmonary artery. Choy WY; Wong YF; Kwan YW; Au AL; Lau WH; Raymond K; Zuo JZ Eur J Pharmacol; 2002 Jan; 434(1-2):55-64. PubMed ID: 11755166 [TBL] [Abstract][Full Text] [Related]
51. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Plane F; Wiley KE; Jeremy JY; Cohen RA; Garland CJ Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730 [TBL] [Abstract][Full Text] [Related]
53. Analysis of responses to hAmylin, hCGRP, and hADM in isolated resistance arteries from the mesenteric vascular bed of the rat. Champion HC; Pierce RL; Bivalacqua TJ; Murphy WA; Coy DH; Kadowitz PJ Peptides; 2001 Sep; 22(9):1427-34. PubMed ID: 11514024 [TBL] [Abstract][Full Text] [Related]
54. Blunted acetylcholine relaxation and nitric oxide release in arteries from renal hypertensive rats. Stankevicius E; Martinez AC; Mulvany MJ; Simonsen U J Hypertens; 2002 Aug; 20(8):1571-9. PubMed ID: 12172319 [TBL] [Abstract][Full Text] [Related]
55. Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery. Fujimoto S; Asano T; Sakai M; Sakurai K; Takagi D; Yoshimoto N; Itoh T Eur J Pharmacol; 2001 Feb; 412(3):291-300. PubMed ID: 11166293 [TBL] [Abstract][Full Text] [Related]
56. Influence of chronic ethanol consumption on arterial tone in young and aged rats. Kähönen M; Karjala K; Hutri-Kähönen N; Wu X; Jaatinen P; Riihioja P; Hervonen A; Pörsti I Am J Physiol; 1999 Feb; 276(2):H464-71. PubMed ID: 9950846 [TBL] [Abstract][Full Text] [Related]
57. Role of phospholipase C and diacylglyceride lipase pathway in arachidonic acid release and acetylcholine-induced vascular relaxation in rabbit aorta. Tang X; Edwards EM; Holmes BB; Falck JR; Campbell WB Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H37-45. PubMed ID: 16024567 [TBL] [Abstract][Full Text] [Related]
58. Endothelium-dependent relaxation of rat mesenteric arterial rings by a Phoneutria nigriventer venom fraction. Weinberg M; Cordeiro MN; De L; Oliveira LC; Diniz CR Jpn J Pharmacol; 2002 Feb; 88(2):189-96. PubMed ID: 11928720 [TBL] [Abstract][Full Text] [Related]
59. Effect of hypoxia on vasodilator responses to S-nitroso-N-acetylpenicillamine and levcromakalim in guinea pig basilar artery. Movahed P; Högestätt ED; Petersson J Naunyn Schmiedebergs Arch Pharmacol; 2003 May; 367(5):532-7. PubMed ID: 12669187 [TBL] [Abstract][Full Text] [Related]
60. Effect of nitric oxide synthase inhibition on the acetylcholine response in the perfused hind limb of rats. Brouwers-Ceiler DL; Nelissen-Vrancken HJ; Smits JF Eur J Pharmacol; 1996 Jun; 307(1):65-8. PubMed ID: 8831105 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]