BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15959556)

  • 1. Epigenetic regulation of lymphoid specific gene sets.
    Györy I; Minarovits J
    Biochem Cell Biol; 2005 Jun; 83(3):286-95. PubMed ID: 15959556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EBNA2 and Notch signalling in Epstein-Barr virus mediated immortalization of B lymphocytes.
    Zimber-Strobl U; Strobl LJ
    Semin Cancer Biol; 2001 Dec; 11(6):423-34. PubMed ID: 11669604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell- and stage-specific chromatin structure across the Complement receptor 2 (CR2/CD21) promoter coincide with CBF1 and C/EBP-beta binding in B cells.
    Cruickshank MN; Fenwick E; Karimi M; Abraham LJ; Ulgiati D
    Mol Immunol; 2009 Aug; 46(13):2613-22. PubMed ID: 19487031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia.
    Niller HH; Wolf H; Minarovits J
    Semin Cancer Biol; 2009 Jun; 19(3):158-64. PubMed ID: 19429479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Step out of the groove: epigenetic gene control systems and engineered transcription factors.
    Verschure PJ; Visser AE; Rots MG
    Adv Genet; 2006; 56():163-204. PubMed ID: 16735158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective.
    Rajasekhar VK; Begemann M
    Stem Cells; 2007 Oct; 25(10):2498-510. PubMed ID: 17600113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells.
    Hong JA; Kang Y; Abdullaev Z; Flanagan PT; Pack SD; Fischette MR; Adnani MT; Loukinov DI; Vatolin S; Risinger JI; Custer M; Chen GA; Zhao M; Nguyen DM; Barrett JC; Lobanenkov VV; Schrump DS
    Cancer Res; 2005 Sep; 65(17):7763-74. PubMed ID: 16140944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells.
    Szenthe K; Koroknai A; Banati F; Bathori Z; Lozsa R; Burgyan J; Wolf H; Salamon D; Nagy K; Niller HH; Minarovits J
    Biochem Biophys Res Commun; 2013 Apr; 433(4):489-95. PubMed ID: 23528241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of lymphocyte-specific inactivation of RAG-2 intragenic promoter of NWC: implications for epigenetic control of RAG locus.
    Cebrat M; Cebula A; Laszkiewicz A; Kasztura M; Miazek A; Kisielow P
    Mol Immunol; 2008 Apr; 45(8):2297-306. PubMed ID: 18166226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium.
    Plachot C; Lelièvre SA
    Exp Cell Res; 2004 Aug; 298(1):122-32. PubMed ID: 15242767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic mechanisms in glioblastoma multiforme.
    Nagarajan RP; Costello JF
    Semin Cancer Biol; 2009 Jun; 19(3):188-97. PubMed ID: 19429483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic and reversibility of heterochromatic gene silencing in human disease.
    Zardo G; Fazi F; Travaglini L; Nervi C
    Cell Res; 2005 Sep; 15(9):679-90. PubMed ID: 16212874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of transcription by the Epstein-Barr virus nuclear antigen EBNA 2.
    Palermo RD; Webb HM; Gunnell A; West MJ
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):625-8. PubMed ID: 18631129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A distinct epigenetic signature at targets of a leukemia protein.
    Rossetti S; Hoogeveen AT; Liang P; Stanciu C; van der Spek P; Sacchi N
    BMC Genomics; 2007 Feb; 8():38. PubMed ID: 17266773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic changes in solid and hematopoietic tumors.
    Toyota M; Issa JP
    Semin Oncol; 2005 Oct; 32(5):521-30. PubMed ID: 16210093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epstein-Barr nuclear antigen-3 and -4 interact with RBP-2N, a major isoform of RBP-J kappa in B lymphocytes.
    Krauer KG; Kienzle N; Young DB; Sculley TB
    Virology; 1996 Dec; 226(2):346-53. PubMed ID: 8955054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programming of gene expression by Polycomb group proteins.
    Köhler C; Villar CB
    Trends Cell Biol; 2008 May; 18(5):236-43. PubMed ID: 18375123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein.
    Kashuba E; Yurchenko M; Szirak K; Stahl J; Klein G; Szekely L
    Exp Cell Res; 2005 Feb; 303(1):47-55. PubMed ID: 15572026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.