These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 15959892)
1. Stable hybridoma cultivation in a pilot-scale acoustic perfusion system: long-term process performance and effect of recirculation rate. Dalm MC; Jansen M; Keijzer TM; van Grunsven WM; Oudshoorn A; Tramper J; Martens DE Biotechnol Bioeng; 2005 Sep; 91(7):894-900. PubMed ID: 15959892 [TBL] [Abstract][Full Text] [Related]
2. The production of monoclonal antibody in growth-arrested hybridomas cultivated in suspension and immobilized modes. Seifert DB; Phillips JA Biotechnol Prog; 1999; 15(4):655-66. PubMed ID: 10441357 [TBL] [Abstract][Full Text] [Related]
3. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: part I. Cell density, viability, and cell-cycle distribution. Dalm MC; Cuijten SM; van Grunsven WM; Tramper J; Martens DE Biotechnol Bioeng; 2004 Dec; 88(5):547-57. PubMed ID: 15459904 [TBL] [Abstract][Full Text] [Related]
4. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system. Tang YJ; Ohashi R; Hamel JF Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696 [TBL] [Abstract][Full Text] [Related]
5. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Dong H; Tang YJ; Ohashi R; Hamel JF Biotechnol Prog; 2005; 21(1):140-7. PubMed ID: 15903251 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Nilsang S; Nehru V; Plieva FM; Nandakumar KS; Rakshit SK; Holmdahl R; Mattiasson B; Kumar A Biotechnol Prog; 2008; 24(5):1122-31. PubMed ID: 19194922 [TBL] [Abstract][Full Text] [Related]
7. Antibody production by a hybridoma cell line at high cell density is limited by two independent mechanisms. Gramer MJ; Britton TL Biotechnol Bioeng; 2002 Aug; 79(3):277-83. PubMed ID: 12115416 [TBL] [Abstract][Full Text] [Related]
8. [On-line monitoring of oxygen uptake rate and its application in hybridoma culture]. Feng Q; Mi L; Li L; Wang XH; Chen ZN Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):593-7. PubMed ID: 15969090 [TBL] [Abstract][Full Text] [Related]
9. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium. Hesse F; Ebel M; Konisch N; Sterlinski R; Kessler W; Wagner R Biotechnol Prog; 2003; 19(3):833-43. PubMed ID: 12790647 [TBL] [Abstract][Full Text] [Related]
10. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system. Huang EP; Marquis CP; Gray PP Biotechnol Bioeng; 2004 Nov; 88(4):437-50. PubMed ID: 15459913 [TBL] [Abstract][Full Text] [Related]
11. Partial and total cell retention in a filtration-based homogeneous perfusion reactor. Banik GG; Heath CA Biotechnol Prog; 1995; 11(5):584-8. PubMed ID: 8546841 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of Chinese hamster ovary cell stability during repeated batch culture for large-scale antibody production. Kaneko Y; Sato R; Aoyagi H J Biosci Bioeng; 2010 Mar; 109(3):274-80. PubMed ID: 20159577 [TBL] [Abstract][Full Text] [Related]
13. Factors affecting monoclonal antibody production in culture. Reuveny S; Velez D; Macmillan JD; Miller L Dev Biol Stand; 1987; 66():169-75. PubMed ID: 3582746 [TBL] [Abstract][Full Text] [Related]
14. Acoustic cell filter: a proven cell retention technology for perfusion of animal cell cultures. Shirgaonkar IZ; Lanthier S; Kamen A Biotechnol Adv; 2004 Jul; 22(6):433-44. PubMed ID: 15135491 [TBL] [Abstract][Full Text] [Related]
15. Continuous production of monoclonal antibody in a packed-bed bioreactor. Golmakany N; Rasaee MJ; Furouzandeh M; Shojaosadati SA; Kashanian S; Omidfar K Biotechnol Appl Biochem; 2005 Jun; 41(Pt 3):273-8. PubMed ID: 15506916 [TBL] [Abstract][Full Text] [Related]
16. Control of long-term perfusion Chinese hamster ovary cell culture by glucose auxostat. Konstantinov KB; Tsai Y; Moles D; Matanguihan R Biotechnol Prog; 1996; 12(1):100-9. PubMed ID: 8845100 [TBL] [Abstract][Full Text] [Related]
17. Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Gorenflo VM; Smith L; Dedinsky B; Persson B; Piret JM Biotechnol Bioeng; 2002 Nov; 80(4):438-44. PubMed ID: 12325152 [TBL] [Abstract][Full Text] [Related]
18. Recombinant antibody production by perfusion cultures of rCHO cells in a depth filter perfusion system. Lee JC; Chang HN; Oh DJ Biotechnol Prog; 2005; 21(1):134-9. PubMed ID: 15903250 [TBL] [Abstract][Full Text] [Related]
19. Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Kim BJ; Chang HN; Oh DJ Biotechnol Prog; 2007; 23(5):1186-97. PubMed ID: 17691812 [TBL] [Abstract][Full Text] [Related]
20. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: metabolic analysis. Dalm MC; Lamers PP; Cuijten SM; Tjeerdsma AM; van Grunsven WM; Tramper J; Martens DE Biotechnol Prog; 2007; 23(3):560-9. PubMed ID: 17439155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]