These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15960448)

  • 21. Microchannel electrodes for recording and stimulation: in vitro evaluation.
    FitzGerald JJ; Lacour SP; McMahon SB; Fawcett JW
    IEEE Trans Biomed Eng; 2009 May; 56(5):1524-34. PubMed ID: 19203882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Experimental study of excitation of peripheral nerves in transverse electric field stimulation].
    Yu H; Liu X; Zheng C; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):654-7. PubMed ID: 16156243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Microneurography--from basic aspects to clinical applications and application in space medicine].
    Mano T
    Brain Nerve; 2009 Mar; 61(3):227-42. PubMed ID: 19301593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb.
    Jia X; Koenig MA; Zhang X; Zhang J; Chen T; Chen Z
    J Hand Surg Am; 2007; 32(5):657-66. PubMed ID: 17482005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD; Detlefsen DE
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):327-32. PubMed ID: 16485762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural interfaces for regenerated nerve stimulation and recording.
    Dario P; Garzella P; Toro M; Micera S; Alavi M; Meyer U; Valderrama E; Sebastiani L; Ghelarducci B; Mazzoni C; Pastacaldi P
    IEEE Trans Rehabil Eng; 1998 Dec; 6(4):353-63. PubMed ID: 9865882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural basis of cutaneous sensations analyzed by microelectrode measurements from human peripheral nerves--a review.
    Järvilehto T
    Scand J Psychol; 1977; 18(4):348-59. PubMed ID: 339334
    [No Abstract]   [Full Text] [Related]  

  • 31. Technology insight: future neuroprosthetic therapies for disorders of the nervous system.
    Normann RA
    Nat Clin Pract Neurol; 2007 Aug; 3(8):444-52. PubMed ID: 17671522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Microclip Peripheral Nerve Interface (μcPNI) for Bioelectronic Interfacing with Small Nerves.
    Rowan CC; Graudejus O; Otchy TM
    Adv Sci (Weinh); 2022 Jan; 9(3):e2102945. PubMed ID: 34837353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Very low-noise ENG amplifier system using CMOS technology.
    Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings.
    Gao L; Wang J; Guan S; Du M; Wu K; Xu K; Zou L; Tian H; Fang Y
    Nano Lett; 2019 Nov; 19(11):8032-8039. PubMed ID: 31580687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive neutralization of myoelectric interference from neural recording tripoles.
    Pachnis I; Demosthenous A; Donaldson N
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1067-74. PubMed ID: 17554825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the use of wavelet denoising and spike sorting techniques to process electroneurographic signals recorded using intraneural electrodes.
    Citi L; Carpaneto J; Yoshida K; Hoffmann KP; Koch KP; Dario P; Micera S
    J Neurosci Methods; 2008 Jul; 172(2):294-302. PubMed ID: 18534683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual microelectrode technique for deep brain stereotactic surgery in humans.
    Levy R; Lozano AM; Hutchison WD; Dostrovsky JO
    Neurosurgery; 2007 Apr; 60(4 Suppl 2):277-83; discussion 283-4. PubMed ID: 17415164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Application of selective microelectrode in plant physiological research].
    Zhu JY; Gao RF; Xu Y
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Apr; 33(2):101-8. PubMed ID: 17452794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
    Kim ET; Kim C; Lee SW; Seo JM; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4337-41. PubMed ID: 19264890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.