BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 15960589)

  • 1. Comparative photobiology of growth responses to two UV-B wavebands and UV-C in dim-red-light- and white-light-grown cucumber (Cucumis sativus) seedlings: physiological evidence for photoreactivation.
    Shinkle JR; Derickson DL; Barnes PW
    Photochem Photobiol; 2005; 81(5):1069-74. PubMed ID: 15960589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and morphological responses to different UV wavebands in cucumber (Cucumis sativum) and other dicotyledonous seedlings.
    Shinkle JR; Atkins AK; Humphrey EE; Rodgers CW; Wheeler SL; Barnes PW
    Physiol Plant; 2004 Feb; 120(2):240-248. PubMed ID: 15032858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photomorphogenic regulation of increases in UV-absorbing pigments in cucumber (Cucumis sativus) and Arabidopsis thaliana seedlings induced by different UV-B and UV-C wavebands.
    Shinkle JR; Edwards MC; Koenig A; Shaltz A; Barnes PW
    Physiol Plant; 2010 Jan; 138(1):113-21. PubMed ID: 20070846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing environmental conditions for mass application of mechano-dwarfing stimuli to Arabidopsis.
    Montgomery JA; Bressan RA; Mitchell CA
    J Am Soc Hortic Sci; 2004 May; 129(3):339-43. PubMed ID: 15776543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber.
    Spalding EP; Cosgrove DJ
    Planta; 1989; 178():407-10. PubMed ID: 11537725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Differences in plant hormone level of cucumber seedlings grown under sulfur or xenon lamp].
    Duan W; Gao JP; Wang P; Yu XJ; Meng QW; Xu CH; Mi HL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Dec; 30(6):687-90. PubMed ID: 15643091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.
    Qiu ZB; Zhu XJ; Li FM; Liu X; Yue M
    Photochem Photobiol Sci; 2007 Jul; 6(7):788-93. PubMed ID: 17609773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation.
    Cosgrove DJ
    Planta; 1988; 176():109-16. PubMed ID: 11539804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of time and intensity of supplemental blue lighting during morning twilight on growth and physiological performance of cucumber seedlings.
    Sung IK; Kiyota M; Hirano T
    Life Support Biosph Sci; 1998; 5(2):137-42. PubMed ID: 11541669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue + UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings.
    Wang Y; Zhou B; Sun M; Li Y; Kawabata S
    Plant Cell Physiol; 2012 Aug; 53(8):1470-80. PubMed ID: 22706033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.
    Mitani-Sano M; Tezuka T
    J Photochem Photobiol B; 2013 Nov; 128():64-9. PubMed ID: 24013482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-germination seed-phytochrome signals control stem extension in dark-grown Arabidopsis seedlings.
    Alconada Magliano T; Casal JJ
    Photochem Photobiol Sci; 2004 Jun; 3(6):612-6. PubMed ID: 15170493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fluorescence, excited by light in the 380-540 nm wavelength range, in in cucumber leaves depends on the time of vegetation and light regime].
    Zavoruev VV; Zavorueva EN; Shelegov AV
    Biofizika; 2000; 45(4):704-11. PubMed ID: 11040981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rutin on vegetative growth of mung bean (Vigna radiata) seedlings and its interaction with indoleacetic acid.
    Liang H; Sagawa Y; Li QX
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):361-8. PubMed ID: 16121006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A highly efficient system for induction of female flowers in derooted seedlings of Cucumis sativus L. grown on the medium].
    Huang ZX; Duan HG; Qing DH; Wang F; Liu L
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Apr; 33(2):160-4. PubMed ID: 17452802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hypocotyl chloroplast plays a role in phototropic bending of Arabidopsis seedlings: developmental and genetic evidence.
    Jin X; Zhu J; Zeiger E
    J Exp Bot; 2001 Jan; 52(354):91-7. PubMed ID: 11181717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.
    Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J
    J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochrome-mediated phototropism in de-etiolated seedlings : occurrence and ecological significance.
    Ballaré CL; Scopel AL; Radosevich SR; Kendrick RE
    Plant Physiol; 1992 Sep; 100(1):170-7. PubMed ID: 16652942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic separation of phototropism from blue-light inhibition of stem elongation.
    Cosgrove DJ
    Photochem Photobiol; 1985; 42(6):745-51. PubMed ID: 11538840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of physiological phototropin1 (phot1) action in response to UV-C illumination.
    Magerøy MH; Kowalik EH; Folta KM; Shinkle J
    Plant Signal Behav; 2010 Oct; 5(10):1204-10. PubMed ID: 20861684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.