These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15960672)

  • 1. Overland flow delivery of faecal bacteria to a headwater pastoral stream.
    Collins R; Elliott S; Adams R
    J Appl Microbiol; 2005; 99(1):126-32. PubMed ID: 15960672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling bacterial water quality in streams draining pastoral land.
    Collins R; Rutherford K
    Water Res; 2004 Feb; 38(3):700-12. PubMed ID: 14723940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numbers and transported state of Escherichia coli in runoff direct from fresh cowpats under simulated rainfall.
    Muirhead RW; Collins RP; Bremer PJ
    Lett Appl Microbiol; 2006 Feb; 42(2):83-7. PubMed ID: 16441369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stormflow-dominated loads of faecal pollution from an intensively dairy-farmed catchment.
    Davies-Colley R; Nagels J; Lydiard E
    Water Sci Technol; 2008; 57(10):1519-23. PubMed ID: 18520007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential behaviour of Escherichia coli and Campylobacter spp. in a stream draining dairy pasture.
    Stott R; Davies-Colley R; Nagels J; Donnison A; Ross C; Muirhead R
    J Water Health; 2011 Mar; 9(1):59-69. PubMed ID: 21301115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faecal contamination over flood events in a pastoral agricultural stream in New Zealand.
    Nagels JW; Davies-Colley RJ; Donnison AM; Muirhead RW
    Water Sci Technol; 2002; 45(12):45-52. PubMed ID: 12201126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus and sediment loss in a catchment with winter forage grazing of cropland by dairy cattle.
    McDowell RW
    J Environ Qual; 2006; 35(2):575-83. PubMed ID: 16510702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of rainfall on the incidence of microbial faecal indicators and the dominant sources of faecal pollution in a Florida river.
    Shehane SD; Harwood VJ; Whitlock JE; Rose JB
    J Appl Microbiol; 2005; 98(5):1127-36. PubMed ID: 15836482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Faecal bacteria yields in artificial flood events: quantifying in-stream stores.
    Muirhead RW; Davies-Colley RJ; Donnison AM; Nagels JW
    Water Res; 2004 Mar; 38(5):1215-24. PubMed ID: 14975655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.
    Viau EJ; Goodwin KD; Yamahara KM; Layton BA; Sassoubre LM; Burns SL; Tong HI; Wong SH; Lu Y; Boehm AB
    Water Res; 2011 May; 45(11):3279-90. PubMed ID: 21492899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usefulness of monitoring tropical streams for male-specific RNA coliphages.
    Luther K; Fujioka R
    J Water Health; 2004 Sep; 2(3):171-81. PubMed ID: 15497813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen removal in valley bottom wetlands: assessment in headwater catchments distributed throughout a large basin.
    Montreuil O; Merot P
    J Environ Qual; 2006; 35(6):2113-22. PubMed ID: 17071880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of septic system failure determined by a bacterial biochemical fingerprinting method.
    Ahmed W; Neller R; Katouli M
    J Appl Microbiol; 2005; 98(4):910-20. PubMed ID: 15752338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus concentrations in overland flow from diverse locations on a New York dairy farm.
    Hively WD; Bryant RB; Fahey TJ
    J Environ Qual; 2005; 34(4):1224-33. PubMed ID: 15942041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of fallout radionuclides ((7)Be, (210)Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment.
    Ribolzi O; Evrard O; Huon S; Rochelle-Newall E; Henri-des-Tureaux T; Silvera N; Thammahacksac C; Sengtaheuanghoung O
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3427-35. PubMed ID: 26490918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two reservoir model to predict Escherichia coli losses to water from pastures grazed by dairy cows.
    Muirhead RW; Monaghan RM
    Environ Int; 2012 Apr; 40():8-14. PubMed ID: 22280922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect hydrological controls on E. coli concentration and loading in midwestern streams.
    Vidon P; Tedesco LP; Wilson J; Campbell MA; Casey LR; Gray M
    J Environ Qual; 2008; 37(5):1761-8. PubMed ID: 18689737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of flow path length and flow rate on phosphorus loss in simulated overland flow from a humic gleysol grassland soil.
    Doody D; Moles R; Tunney H; Kurz I; Bourke D; Daly K; O'Regan B
    Sci Total Environ; 2006 Dec; 372(1):247-55. PubMed ID: 17095051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of rainfall on the water quality of the Newport River Estuary (Eastern North Carolina, USA).
    Coulliette AD; Noble RT
    J Water Health; 2008 Dec; 6(4):473-82. PubMed ID: 18401112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments.
    Rochelle-Newall EJ; Ribolzi O; Viguier M; Thammahacksa C; Silvera N; Latsachack K; Dinh RP; Naporn P; Sy HT; Soulileuth B; Hmaimum N; Sisouvanh P; Robain H; Janeau JL; Valentin C; Boithias L; Pierret A
    Sci Rep; 2016 Sep; 6():32974. PubMed ID: 27604854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.