These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15960680)

  • 1. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident.
    Bourriaud C; Robins RJ; Martin L; Kozlowski F; Tenailleau E; Cherbut C; Michel C
    J Appl Microbiol; 2005; 99(1):201-12. PubMed ID: 15960680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate?
    Morrison DJ; Mackay WG; Edwards CA; Preston T; Dodson B; Weaver LT
    Br J Nutr; 2006 Sep; 96(3):570-7. PubMed ID: 16925864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic characteristics of the faecal microflora in humans from three age groups.
    Andrieux C; Membré JM; Cayuela C; Antoine JM
    Scand J Gastroenterol; 2002 Jul; 37(7):792-8. PubMed ID: 12190092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro fermentation of broiler cecal content: the role of lactobacilli and pH value on the composition of microbiota and end products fermentation.
    Meimandipour A; Shuhaimi M; Hair-Bejo M; Azhar K; Kabeir BM; Rasti B; Yazid AM
    Lett Appl Microbiol; 2009 Oct; 49(4):415-20. PubMed ID: 19725887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial population dynamics and faecal short-chain fatty acid (SCFA) concentrations in healthy humans.
    McOrist AL; Abell GC; Cooke C; Nyland K
    Br J Nutr; 2008 Jul; 100(1):138-46. PubMed ID: 18205991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro alterations in fecal short chain fatty acids and organic anions induced by the destruction of intestinal microflora under hypotonic and aerobic conditions.
    Araki Y; Andoh A; Fujiyama Y; Itoh A; Bamba T
    Int J Mol Med; 2002 Jun; 9(6):627-31. PubMed ID: 12011980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model.
    Sato T; Matsumoto K; Okumura T; Yokoi W; Naito E; Yoshida Y; Nomoto K; Ito M; Sawada H
    FEMS Microbiol Ecol; 2008 Dec; 66(3):528-36. PubMed ID: 18554304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starch fermentation by faecal bacteria of infants, toddlers and adults: importance for energy salvage.
    Christian MT; Edwards CA; Preston T; Johnston L; Varley R; Weaver LT
    Eur J Clin Nutr; 2003 Nov; 57(11):1486-91. PubMed ID: 14576763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of short-chain fatty acid production.
    Macfarlane S; Macfarlane GT
    Proc Nutr Soc; 2003 Feb; 62(1):67-72. PubMed ID: 12740060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of growth, lactate consumption, and volatile fatty acid production by Megasphaera elsdenii cultivated in minimal and complex media.
    Soto-Cruz O; Favela-Torres E; Saucedo-Castañeda G
    Biotechnol Prog; 2002; 18(2):193-200. PubMed ID: 11934285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissimilatory amino Acid metabolism in human colonic bacteria.
    Smith EA; Macfarlane GT
    Anaerobe; 1997 Oct; 3(5):327-37. PubMed ID: 16887608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].
    Liu W; Zhu WY; Yao W; Mao SY
    Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):435-40. PubMed ID: 17672301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short chain fatty acids in inflammatory bowel disease. The effect of bacterial fermentation of blood.
    Holtug K; Rasmussen HS; Mortensen PB
    Scand J Clin Lab Invest; 1988 Nov; 48(7):667-71. PubMed ID: 3201099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon.
    Waldecker M; Kautenburger T; Daumann H; Busch C; Schrenk D
    J Nutr Biochem; 2008 Sep; 19(9):587-93. PubMed ID: 18061431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential fermentation of glucose-based carbohydrates in vitro by human faecal bacteria--a study of pyrodextrinised starches from different sources.
    Laurentin A; Edwards CA
    Eur J Nutr; 2004 Jun; 43(3):183-9. PubMed ID: 15168041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valerate production by Megasphaera elsdenii isolated from pig feces.
    Yoshikawa S; Araoka R; Kajihara Y; Ito T; Miyamoto H; Kodama H
    J Biosci Bioeng; 2018 May; 125(5):519-524. PubMed ID: 29331526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product.
    Duncan SH; Louis P; Flint HJ
    Appl Environ Microbiol; 2004 Oct; 70(10):5810-7. PubMed ID: 15466518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary fibre and fermentability characteristics of root crops and legumes.
    Mallillin AC; Trinidad TP; Raterta R; Dagbay K; Loyola AS
    Br J Nutr; 2008 Sep; 100(3):485-8. PubMed ID: 18331664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colonic health: fermentation and short chain fatty acids.
    Wong JM; de Souza R; Kendall CW; Emam A; Jenkins DJ
    J Clin Gastroenterol; 2006 Mar; 40(3):235-43. PubMed ID: 16633129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81.
    Weimer PJ; Moen GN
    Appl Microbiol Biotechnol; 2013 May; 97(9):4075-81. PubMed ID: 23271673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.