These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 15960756)
1. Susceptibility of Clostridium perfringens to C-C fatty acids. Skrivanová E; Marounek M; Dlouhá G; Kanka J Lett Appl Microbiol; 2005; 41(1):77-81. PubMed ID: 15960756 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens. Si W; Ni X; Gong J; Yu H; Tsao R; Han Y; Chambers JR J Appl Microbiol; 2009 Jan; 106(1):213-20. PubMed ID: 19054237 [TBL] [Abstract][Full Text] [Related]
3. Anti-Escherichia coli O157:H7 activity of free fatty acids under varying pH. Yang J; Hou X; Mir PS; McAllister TA Can J Microbiol; 2010 Mar; 56(3):263-7. PubMed ID: 20453913 [TBL] [Abstract][Full Text] [Related]
4. Susceptibility of Escherichia coli to C2-C18 fatty acids. Marounek M; Skrivanová E; Rada V Folia Microbiol (Praha); 2003; 48(6):731-5. PubMed ID: 15058184 [TBL] [Abstract][Full Text] [Related]
5. Study of tolnaftate release from fatty acids containing ointment and penetration into human skin ex vivo. Kezutyte T; Drevinskas T; Maruska A; Rimdeika R; Briedis V Acta Pol Pharm; 2011; 68(6):965-73. PubMed ID: 22125963 [TBL] [Abstract][Full Text] [Related]
6. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae). Urbanek A; Szadziewski R; Stepnowski P; Boros-Majewska J; Gabriel I; Dawgul M; Kamysz W; Sosnowska D; Gołębiowski M J Insect Physiol; 2012 Sep; 58(9):1265-76. PubMed ID: 22781366 [TBL] [Abstract][Full Text] [Related]
7. Effect of alpha-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Sado-Kamdem SL; Vannini L; Guerzoni ME Int J Food Microbiol; 2009 Feb; 129(3):288-94. PubMed ID: 19168249 [TBL] [Abstract][Full Text] [Related]
8. Regulation of fatty acid composition of Cl. perfringens type A cells by hydrogen and hydroxyl ions. Sinyak KM; Rudichenko VF; Yaroshenko MN; Kruk VI Biol Bull Acad Sci USSR; 1981; 8(3):223-30. PubMed ID: 6284259 [TBL] [Abstract][Full Text] [Related]
9. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids: differing by four carbon atoms. Costa MC; Sardo M; Rolemberg MP; Ribeiro-Claro P; Meirelles AJ; Coutinho JA; Krähenbühl MA Chem Phys Lipids; 2009 Jan; 157(1):40-50. PubMed ID: 18996101 [TBL] [Abstract][Full Text] [Related]
10. In vitro inhibitory effect of hen egg white lysozyme on Clostridium perfringens type A associated with broiler necrotic enteritis and its alpha-toxin production. Zhang G; Darius S; Smith SR; Ritchie SJ Lett Appl Microbiol; 2006 Feb; 42(2):138-43. PubMed ID: 16441378 [TBL] [Abstract][Full Text] [Related]
11. Phospholipids of Clostridium perfringens: a reexamination. Johnston NC; Baker JK; Goldfine H FEMS Microbiol Lett; 2004 Apr; 233(1):65-8. PubMed ID: 15043870 [TBL] [Abstract][Full Text] [Related]
12. Effect of capric, lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus. Sado Kamdem S; Guerzoni ME; Baranyi J; Pin C Int J Food Microbiol; 2008 Nov; 128(1):122-8. PubMed ID: 18793815 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum. Siragusa GR; Haas GJ; Matthews PD; Smith RJ; Buhr RJ; Dale NM; Wise MG J Antimicrob Chemother; 2008 Apr; 61(4):853-8. PubMed ID: 18276602 [TBL] [Abstract][Full Text] [Related]
14. [Growth and fatty acid composition of Clostridium perfringens cells under constant pH values]. Rudichenko VF; Siniak KM Izv Akad Nauk SSSR Biol; 1982; (1):106-12. PubMed ID: 6278011 [No Abstract] [Full Text] [Related]
15. Effect of tannins on the in vitro growth of Clostridium perfringens. Elizondo AM; Mercado EC; Rabinovitz BC; Fernandez-Miyakawa ME Vet Microbiol; 2010 Oct; 145(3-4):308-14. PubMed ID: 20471759 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit. Dev Kumar G; Micallef SA Foodborne Pathog Dis; 2017 May; 14(5):293-301. PubMed ID: 28398868 [TBL] [Abstract][Full Text] [Related]
17. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model. Waligora-Dupriet AJ; Dugay A; Auzeil N; Huerre M; Butel MJ Pediatr Res; 2005 Oct; 58(4):629-35. PubMed ID: 16189185 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. Shilling M; Matt L; Rubin E; Visitacion MP; Haller NA; Grey SF; Woolverton CJ J Med Food; 2013 Dec; 16(12):1079-85. PubMed ID: 24328700 [TBL] [Abstract][Full Text] [Related]
19. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm. Chalmers G; Martin SW; Hunter DB; Prescott JF; Weber LJ; Boerlin P Vet Microbiol; 2008 Feb; 127(1-2):116-27. PubMed ID: 17888591 [TBL] [Abstract][Full Text] [Related]
20. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms. Nobmann P; Smith A; Dunne J; Henehan G; Bourke P Int J Food Microbiol; 2009 Jan; 128(3):440-5. PubMed ID: 19012983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]