BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15960756)

  • 1. Susceptibility of Clostridium perfringens to C-C fatty acids.
    Skrivanová E; Marounek M; Dlouhá G; Kanka J
    Lett Appl Microbiol; 2005; 41(1):77-81. PubMed ID: 15960756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens.
    Si W; Ni X; Gong J; Yu H; Tsao R; Han Y; Chambers JR
    J Appl Microbiol; 2009 Jan; 106(1):213-20. PubMed ID: 19054237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-Escherichia coli O157:H7 activity of free fatty acids under varying pH.
    Yang J; Hou X; Mir PS; McAllister TA
    Can J Microbiol; 2010 Mar; 56(3):263-7. PubMed ID: 20453913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Susceptibility of Escherichia coli to C2-C18 fatty acids.
    Marounek M; Skrivanová E; Rada V
    Folia Microbiol (Praha); 2003; 48(6):731-5. PubMed ID: 15058184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of tolnaftate release from fatty acids containing ointment and penetration into human skin ex vivo.
    Kezutyte T; Drevinskas T; Maruska A; Rimdeika R; Briedis V
    Acta Pol Pharm; 2011; 68(6):965-73. PubMed ID: 22125963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae).
    Urbanek A; Szadziewski R; Stepnowski P; Boros-Majewska J; Gabriel I; Dawgul M; Kamysz W; Sosnowska D; Gołębiowski M
    J Insect Physiol; 2012 Sep; 58(9):1265-76. PubMed ID: 22781366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of alpha-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus.
    Sado-Kamdem SL; Vannini L; Guerzoni ME
    Int J Food Microbiol; 2009 Feb; 129(3):288-94. PubMed ID: 19168249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of fatty acid composition of Cl. perfringens type A cells by hydrogen and hydroxyl ions.
    Sinyak KM; Rudichenko VF; Yaroshenko MN; Kruk VI
    Biol Bull Acad Sci USSR; 1981; 8(3):223-30. PubMed ID: 6284259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids: differing by four carbon atoms.
    Costa MC; Sardo M; Rolemberg MP; Ribeiro-Claro P; Meirelles AJ; Coutinho JA; Krähenbühl MA
    Chem Phys Lipids; 2009 Jan; 157(1):40-50. PubMed ID: 18996101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro inhibitory effect of hen egg white lysozyme on Clostridium perfringens type A associated with broiler necrotic enteritis and its alpha-toxin production.
    Zhang G; Darius S; Smith SR; Ritchie SJ
    Lett Appl Microbiol; 2006 Feb; 42(2):138-43. PubMed ID: 16441378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipids of Clostridium perfringens: a reexamination.
    Johnston NC; Baker JK; Goldfine H
    FEMS Microbiol Lett; 2004 Apr; 233(1):65-8. PubMed ID: 15043870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of capric, lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus.
    Sado Kamdem S; Guerzoni ME; Baranyi J; Pin C
    Int J Food Microbiol; 2008 Nov; 128(1):122-8. PubMed ID: 18793815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of lupulone against Clostridium perfringens in the chicken intestinal tract jejunum and caecum.
    Siragusa GR; Haas GJ; Matthews PD; Smith RJ; Buhr RJ; Dale NM; Wise MG
    J Antimicrob Chemother; 2008 Apr; 61(4):853-8. PubMed ID: 18276602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Growth and fatty acid composition of Clostridium perfringens cells under constant pH values].
    Rudichenko VF; Siniak KM
    Izv Akad Nauk SSSR Biol; 1982; (1):106-12. PubMed ID: 6278011
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of tannins on the in vitro growth of Clostridium perfringens.
    Elizondo AM; Mercado EC; Rabinovitz BC; Fernandez-Miyakawa ME
    Vet Microbiol; 2010 Oct; 145(3-4):308-14. PubMed ID: 20471759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit.
    Dev Kumar G; Micallef SA
    Foodborne Pathog Dis; 2017 May; 14(5):293-301. PubMed ID: 28398868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model.
    Waligora-Dupriet AJ; Dugay A; Auzeil N; Huerre M; Butel MJ
    Pediatr Res; 2005 Oct; 58(4):629-35. PubMed ID: 16189185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile.
    Shilling M; Matt L; Rubin E; Visitacion MP; Haller NA; Grey SF; Woolverton CJ
    J Med Food; 2013 Dec; 16(12):1079-85. PubMed ID: 24328700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm.
    Chalmers G; Martin SW; Hunter DB; Prescott JF; Weber LJ; Boerlin P
    Vet Microbiol; 2008 Feb; 127(1-2):116-27. PubMed ID: 17888591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.
    Nobmann P; Smith A; Dunne J; Henehan G; Bourke P
    Int J Food Microbiol; 2009 Jan; 128(3):440-5. PubMed ID: 19012983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.