These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 15960801)
1. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Blank LM; Kuepfer L; Sauer U Genome Biol; 2005; 6(6):R49. PubMed ID: 15960801 [TBL] [Abstract][Full Text] [Related]
2. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Papp B; Pál C; Hurst LD Nature; 2004 Jun; 429(6992):661-4. PubMed ID: 15190353 [TBL] [Abstract][Full Text] [Related]
4. Genome-Scale Ando D; García Martín H Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239 [TBL] [Abstract][Full Text] [Related]
5. Role of duplicate genes in genetic robustness against null mutations. Gu Z; Steinmetz LM; Gu X; Scharfe C; Davis RW; Li WH Nature; 2003 Jan; 421(6918):63-6. PubMed ID: 12511954 [TBL] [Abstract][Full Text] [Related]
6. The role of domain redundancy in genetic robustness against null mutations. Pasek S; Risler JL; Brézellec P J Mol Biol; 2006 Sep; 362(2):184-91. PubMed ID: 16914158 [TBL] [Abstract][Full Text] [Related]
7. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose. Jouhten P; Pitkänen E; Pakula T; Saloheimo M; Penttilä M; Maaheimo H BMC Syst Biol; 2009 Oct; 3():104. PubMed ID: 19874611 [TBL] [Abstract][Full Text] [Related]
8. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks. Cakir T; Kirdar B; Ulgen KO Biotechnol Bioeng; 2004 May; 86(3):251-60. PubMed ID: 15083505 [TBL] [Abstract][Full Text] [Related]
9. 13C metabolic flux analysis at a genome-scale. Gopalakrishnan S; Maranas CD Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Raghevendran V; Gombert AK; Christensen B; Kötter P; Nielsen J Yeast; 2004 Jul; 21(9):769-79. PubMed ID: 15282800 [TBL] [Abstract][Full Text] [Related]
11. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. Nookaew I; Jewett MC; Meechai A; Thammarongtham C; Laoteng K; Cheevadhanarak S; Nielsen J; Bhumiratana S BMC Syst Biol; 2008 Aug; 2():71. PubMed ID: 18687109 [TBL] [Abstract][Full Text] [Related]
12. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508 [TBL] [Abstract][Full Text] [Related]
13. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. Mo ML; Palsson BO; Herrgård MJ BMC Syst Biol; 2009 Mar; 3():37. PubMed ID: 19321003 [TBL] [Abstract][Full Text] [Related]
14. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363 [TBL] [Abstract][Full Text] [Related]
15. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Deutscher D; Meilijson I; Kupiec M; Ruppin E Nat Genet; 2006 Sep; 38(9):993-8. PubMed ID: 16941010 [TBL] [Abstract][Full Text] [Related]
16. Metabolic adaptation after whole genome duplication. van Hoek MJ; Hogeweg P Mol Biol Evol; 2009 Nov; 26(11):2441-53. PubMed ID: 19625390 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanisms involved in robustness of yeast central metabolism against null mutations. Maltsev N; Glass EM; Ovchinnikova G; Gu Z J Biochem; 2005 Feb; 137(2):177-87. PubMed ID: 15749832 [TBL] [Abstract][Full Text] [Related]