These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 15960801)

  • 1. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast.
    Blank LM; Kuepfer L; Sauer U
    Genome Biol; 2005; 6(6):R49. PubMed ID: 15960801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast.
    Papp B; Pál C; Hurst LD
    Nature; 2004 Jun; 429(6992):661-4. PubMed ID: 15190353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic functions of duplicate genes in Saccharomyces cerevisiae.
    Kuepfer L; Sauer U; Blank LM
    Genome Res; 2005 Oct; 15(10):1421-30. PubMed ID: 16204195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of duplicate genes in genetic robustness against null mutations.
    Gu Z; Steinmetz LM; Gu X; Scharfe C; Davis RW; Li WH
    Nature; 2003 Jan; 421(6918):63-6. PubMed ID: 12511954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of domain redundancy in genetic robustness against null mutations.
    Pasek S; Risler JL; Brézellec P
    J Mol Biol; 2006 Sep; 362(2):184-91. PubMed ID: 16914158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose.
    Jouhten P; Pitkänen E; Pakula T; Saloheimo M; Penttilä M; Maaheimo H
    BMC Syst Biol; 2009 Oct; 3():104. PubMed ID: 19874611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks.
    Cakir T; Kirdar B; Ulgen KO
    Biotechnol Bioeng; 2004 May; 86(3):251-60. PubMed ID: 15083505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose.
    Raghevendran V; Gombert AK; Christensen B; Kötter P; Nielsen J
    Yeast; 2004 Jul; 21(9):769-79. PubMed ID: 15282800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism.
    Nookaew I; Jewett MC; Meechai A; Thammarongtham C; Laoteng K; Cheevadhanarak S; Nielsen J; Bhumiratana S
    BMC Syst Biol; 2008 Aug; 2():71. PubMed ID: 18687109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connecting extracellular metabolomic measurements to intracellular flux states in yeast.
    Mo ML; Palsson BO; Herrgård MJ
    BMC Syst Biol; 2009 Mar; 3():37. PubMed ID: 19321003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple knockout analysis of genetic robustness in the yeast metabolic network.
    Deutscher D; Meilijson I; Kupiec M; Ruppin E
    Nat Genet; 2006 Sep; 38(9):993-8. PubMed ID: 16941010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic adaptation after whole genome duplication.
    van Hoek MJ; Hogeweg P
    Mol Biol Evol; 2009 Nov; 26(11):2441-53. PubMed ID: 19625390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms involved in robustness of yeast central metabolism against null mutations.
    Maltsev N; Glass EM; Ovchinnikova G; Gu Z
    J Biochem; 2005 Feb; 137(2):177-87. PubMed ID: 15749832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks.
    Millard P; Schmitt U; Kiefer P; Vorholt JA; Heux S; Portais JC
    PLoS Comput Biol; 2020 Apr; 16(4):e1007799. PubMed ID: 32287281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling.
    Yang TH; Heinzle E; Wittmann C
    Comput Biol Chem; 2005 Apr; 29(2):121-33. PubMed ID: 15833440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations.
    Raamsdonk LM; Teusink B; Broadhurst D; Zhang N; Hayes A; Walsh MC; Berden JA; Brindle KM; Kell DB; Rowland JJ; Westerhoff HV; van Dam K; Oliver SG
    Nat Biotechnol; 2001 Jan; 19(1):45-50. PubMed ID: 11135551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.