These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 15961196)
1. Data assimilation for short range atmospheric dispersion of radionuclides: a case study of second-order sensitivity. Quélo D; Sportisse B; Isnard O J Environ Radioact; 2005; 84(3):393-408. PubMed ID: 15961196 [TBL] [Abstract][Full Text] [Related]
2. Kalman filtration of radiation monitoring data from atmospheric dispersion of radioactive materials. Drews M; Lauritzen B; Madsen H; Smith JQ Radiat Prot Dosimetry; 2004; 111(3):257-69. PubMed ID: 15266085 [TBL] [Abstract][Full Text] [Related]
3. Probabilistic risk assessment for long-range atmospheric transport of radionuclides. Lauritzen B; Baklanov A; Mahura A; Mikkelsen T; Sørensen JH J Environ Radioact; 2007; 96(1-3):110-5. PubMed ID: 17482728 [TBL] [Abstract][Full Text] [Related]
4. Comparison between the predictions of a Gaussian plume model and a Lagrangian particle dispersion model for annual average calculations of long-range dispersion of radionuclides. Lutman ER; Jones SR; Hill RA; McDonald P; Lambers B J Environ Radioact; 2004; 75(3):339-55. PubMed ID: 15193798 [TBL] [Abstract][Full Text] [Related]
5. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data. Drews M; Lauritzen B; Madsen H Radiat Prot Dosimetry; 2005; 113(1):75-89. PubMed ID: 15572402 [TBL] [Abstract][Full Text] [Related]
6. Solutions to the Gaussian cloud approximation for gamma absorbed dose. Overcamp TJ Health Phys; 2007 Jan; 92(1):78-81. PubMed ID: 17164603 [TBL] [Abstract][Full Text] [Related]
7. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model. Tsiouri V; Kovalets I; Andronopoulos S; Bartzis JG Radiat Prot Dosimetry; 2012 Jan; 148(1):34-44. PubMed ID: 21349880 [TBL] [Abstract][Full Text] [Related]
8. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station. Patra AK; Nankar DP; Joshi CP; Venkataraman S; Sundar D; Hegde AG Radiat Prot Dosimetry; 2008; 130(3):351-7. PubMed ID: 18664562 [TBL] [Abstract][Full Text] [Related]
9. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system. Basit A; Espinosa F; Avila R; Raza S; Irfan N J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589 [TBL] [Abstract][Full Text] [Related]
10. On the sensitivity of a marine dispersion model to parameters describing the transfers of radionuclides between the liquid and solid phases. Periáñez R J Environ Radioact; 2004; 73(1):101-15. PubMed ID: 15001298 [TBL] [Abstract][Full Text] [Related]
11. Test and application of a general process-based dynamic coastal mass-balance model for contaminants using data for radionuclides in the Dnieper-Bug estuary. Håkanson L; Lindgren D Sci Total Environ; 2009 Jan; 407(2):899-916. PubMed ID: 19004470 [TBL] [Abstract][Full Text] [Related]
12. Reconstruction of (131)I radioactive contamination in Ukraine caused by the Chernobyl accident using atmospheric transport modelling. Talerko N J Environ Radioact; 2005; 84(3):343-62. PubMed ID: 16024139 [TBL] [Abstract][Full Text] [Related]
13. Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant. Leelossy A; Mészáros R; Lagzi I J Environ Radioact; 2011 Dec; 102(12):1117-21. PubMed ID: 21856053 [TBL] [Abstract][Full Text] [Related]
14. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4). Leroy C; Maro D; Hébert D; Solier L; Rozet M; Le Cavelier S; Connan O J Environ Radioact; 2010 Nov; 101(11):937-44. PubMed ID: 20638159 [TBL] [Abstract][Full Text] [Related]
15. A general approach for two-stage analysis of multilevel clustered non-Gaussian data. Chervoneva I; Iglewicz B; Hyslop T Biometrics; 2006 Sep; 62(3):752-9. PubMed ID: 16984317 [TBL] [Abstract][Full Text] [Related]
16. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides. Kraus T; Foster K Health Phys; 2014 Aug; 107(2):150-63. PubMed ID: 24978286 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of Dutch and German emergency-management models for near border nuclear accidents. Kok YS; Eleveld H; Schnadt H; Gering F; Gregor J; Böttger H; Salfeld C; Twenhöfel CJ; Reinen HA Radiat Prot Dosimetry; 2005; 113(4):381-91. PubMed ID: 15817577 [TBL] [Abstract][Full Text] [Related]
18. Assessment of spatial distribution of fallout radionuclides through geostatistics concept. Mabit L; Bernard C J Environ Radioact; 2007; 97(2-3):206-19. PubMed ID: 17673340 [TBL] [Abstract][Full Text] [Related]
19. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Smithson M; Verkuilen J Psychol Methods; 2006 Mar; 11(1):54-71. PubMed ID: 16594767 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Hirose K; Igarashi Y; Aoyama M Appl Radiat Isot; 2008 Nov; 66(11):1675-8. PubMed ID: 18502651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]