BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 15961203)

  • 1. Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
    Terrier A; Büchler P; Farron A
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):710-7. PubMed ID: 15961203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress analysis of cemented glenoid prostheses in total shoulder arthroplasty.
    Gupta S; van der Helm FC; van Keulen F
    J Biomech; 2004 Nov; 37(11):1777-86. PubMed ID: 15388321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The possibilities of uncemented glenoid component--a finite element study.
    Gupta S; van der Helm FC; van Keulen F
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):292-302. PubMed ID: 15003345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone ingrowth simulation for a concept glenoid component design.
    Andreykiv A; Prendergast PJ; van Keulen F; Swieszkowski W; Rozing PM
    J Biomech; 2005 May; 38(5):1023-33. PubMed ID: 15797584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glenoid component inclination on its fixation and humeral head subluxation in total shoulder arthroplasty.
    Oosterom R; Rozing PM; Bersee HE
    Clin Biomech (Bristol, Avon); 2004 Dec; 19(10):1000-8. PubMed ID: 15531049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acromion-fixation of glenoid components in total shoulder arthroplasty.
    Murphy LA; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1702-11. PubMed ID: 15958228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of interface conditions between ultrahigh molecular weight polyethylene and polymethyl methacrylate bone cement on the mechanical behaviour of total shoulder arthroplasty.
    Oosterom R; van Ostayen RA; Antonelli V; Bersee HE
    Proc Inst Mech Eng H; 2005 Nov; 219(6):425-35. PubMed ID: 16312102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Charnley hip neck-angle inclination on the stresses at stem/cement and bone/cement interfaces.
    Zaki M; Saad F; Al-Ebiary MN
    Biomed Mater Eng; 2002; 12(4):411-21. PubMed ID: 12652035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.
    Nuño N; Madrala A; Plamondon D
    J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the cement mantle thickness influence the glenoid loosening in anatomic total shoulder arthroplasty? An experimental study.
    Clavert P; Bouchaïb J; Kling A; Kempf JF
    J Orthop Sci; 2019 Jan; 24(1):81-86. PubMed ID: 30146383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of variation of cement thickness on bone and cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    Iowa Orthop J; 1993; 13():155-9. PubMed ID: 7820736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cement mantle stress under retroversion torque at heel-strike.
    Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD
    Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of a three-dimensional model of a proximal femur-cemented femoral THJR component construct: influence of assigned interface conditions on strain energy density.
    Lewis G; Duggineni R
    Biomed Mater Eng; 2006; 16(5):319-27. PubMed ID: 17075167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational assessment of the effect of polyethylene wear rate, mantle thickness, and porosity on the mechanical failure of the acetabular cement mantle.
    Coultrup OJ; Hunt C; Wroblewski BM; Taylor M
    J Orthop Res; 2010 May; 28(5):565-70. PubMed ID: 19950359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wear in the prosthetic shoulder: association with design parameters.
    Hopkins AR; Hansen UN; Amis AA; Knight L; Taylor M; Levy O; Copeland SA
    J Biomech Eng; 2007 Apr; 129(2):223-30. PubMed ID: 17408327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis.
    Nicolella DP; Thacker BH; Katoozian H; Davy DT
    J Biomech; 2006; 39(7):1265-78. PubMed ID: 15961093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical aspects of degree of cement bonding and implant wedge effect.
    Yoon YS; Oxland TR; Hodgson AJ; Duncan CP; Masri BA; Choi D
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1141-7. PubMed ID: 18584929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.