BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 15961203)

  • 21. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems.
    Lacroix D; Murphy LA; Prendergast PJ
    J Biomech Eng; 2000 Aug; 122(4):430-6. PubMed ID: 11036568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis.
    Couteau B; Mansat P; Estivalèzes E; Darmana R; Mansat M; Egan J
    Clin Biomech (Bristol, Avon); 2001 Aug; 16(7):566-75. PubMed ID: 11470298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does increased bone-cement interface strength have negative consequences for bulk cement integrity? A finite element study.
    Pérez MA; García-Aznar JM; Doblaré M
    Ann Biomed Eng; 2009 Mar; 37(3):454-66. PubMed ID: 19085106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of peg design and cement mantle thickness on pull-out strength of glenoid component pegs.
    Nyffeler RW; Anglin C; Sheikh R; Gerber C
    J Bone Joint Surg Br; 2003 Jul; 85(5):748-52. PubMed ID: 12892204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of variation of prosthesis size on cement stress at the tip of a femoral implant.
    Lee IY; Skinner HB; Keyak JH
    J Biomed Mater Res; 1994 Sep; 28(9):1055-60. PubMed ID: 7814433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative measurement of the stresses induced during polymerisation of bone cement.
    Roques A; Browne M; Taylor A; New A; Baker D
    Biomaterials; 2004 Aug; 25(18):4415-24. PubMed ID: 15046932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Finite element analysis of a cemented ceramic femoral component for the assembly situation in total knee arthroplasty].
    Schultze C; Klüss D; Martin H; Hingst V; Mittelmeier W; Schmitz KP; Bader R
    Biomed Tech (Berl); 2007 Aug; 52(4):301-7. PubMed ID: 17691864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative finite element analysis of the debonding process in different concepts of cemented hip implants.
    Pérez MA; Palacios J
    Ann Biomed Eng; 2010 Jun; 38(6):2093-106. PubMed ID: 20232148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications.
    Gbureck U; Grübel S; Thull R; Barralet JE
    Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Load transfer after cemented total shoulder arthroplasty.
    Patel RJ; Wright TM; Gao Y
    J Shoulder Elbow Surg; 2014 Oct; 23(10):1553-62. PubMed ID: 24751532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Cemented total knee arthroplasties].
    Mumme T; Marx R; Andereya S; Weber M; Müller-Rath R; Wirtz DC
    Z Orthop Ihre Grenzgeb; 2006; 144(3):281-8. PubMed ID: 16821179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.
    Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH
    J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical bond strength of the cement-tibial component interface in total knee arthroplasty.
    Pittman GT; Peters CL; Hines JL; Bachus KN
    J Arthroplasty; 2006 Sep; 21(6):883-8. PubMed ID: 16950044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the effects of implant materials and designs on thermal necrosis of bone in cemented hip arthroplasty.
    Li C; Kotha S; Mason J
    Biomed Mater Eng; 2003; 13(4):419-28. PubMed ID: 14646056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed-mode failure strength of implant-cement interface specimens with varying surface roughness.
    Zelle J; Janssen D; Peeters S; Brouwer C; Verdonschot N
    J Biomech; 2011 Feb; 44(4):780-3. PubMed ID: 21074772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of FE idealisation, load conditions and interface assumptions on the stress distribution and fatigue notch factor in the human femur with an endoprosthesis.
    Hedia HS; Barton DC; Fisher J; Elmidany TT
    Biomed Mater Eng; 1996; 6(3):135-52. PubMed ID: 8922259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reinforcement of bone cement around prostheses by pre-coated wire coil: a finite element model study.
    Grosland N; Kim JK; Park JB
    Biomed Mater Eng; 1995; 5(1):29-36. PubMed ID: 7773144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.