BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 15961452)

  • 1. PILER: identification and classification of genomic repeats.
    Edgar RC; Myers EW
    Bioinformatics; 2005 Jun; 21 Suppl 1():i152-8. PubMed ID: 15961452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PILER-CR: fast and accurate identification of CRISPR repeats.
    Edgar RC
    BMC Bioinformatics; 2007 Jan; 8():18. PubMed ID: 17239253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TEclass--a tool for automated classification of unknown eukaryotic transposable elements.
    Abrusán G; Grundmann N; DeMester L; Makalowski W
    Bioinformatics; 2009 May; 25(10):1329-30. PubMed ID: 19349283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome.
    Becher V; Deymonnaz A; Heiber P
    Bioinformatics; 2009 Jul; 25(14):1746-53. PubMed ID: 19451169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of retrotransposon regulatory regions and its consequences on the Drosophila melanogaster and Homo sapiens host genomes.
    Fablet M; Rebollo R; Biémont C; Vieira C
    Gene; 2007 Apr; 390(1-2):84-91. PubMed ID: 17005332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved approach for reconstructing consensus repeats from short sequence reads.
    Chu C; Pei J; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):566. PubMed ID: 30367582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel genome-scale repeat finder geared towards transposons.
    Li X; Kahveci T; Settles AM
    Bioinformatics; 2008 Feb; 24(4):468-76. PubMed ID: 18089620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BWtrs: A tool for searching for tandem repeats in DNA sequences based on the Burrows-Wheeler transform.
    Pokrzywa R; Polanski A
    Genomics; 2010 Nov; 96(5):316-21. PubMed ID: 20709168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How to usefully compare homologous plant genes and chromosomes as DNA sequences.
    Lyons E; Freeling M
    Plant J; 2008 Feb; 53(4):661-73. PubMed ID: 18269575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ensembl automatic gene annotation system.
    Curwen V; Eyras E; Andrews TD; Clarke L; Mongin E; Searle SM; Clamp M
    Genome Res; 2004 May; 14(5):942-50. PubMed ID: 15123590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HomologMiner: looking for homologous genomic groups in whole genomes.
    Hou M; Berman P; Hsu CH; Harris RS
    Bioinformatics; 2007 Apr; 23(8):917-25. PubMed ID: 17308341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-grained annotation and classification of de novo predicted LTR retrotransposons.
    Steinbiss S; Willhoeft U; Gremme G; Kurtz S
    Nucleic Acids Res; 2009 Nov; 37(21):7002-13. PubMed ID: 19786494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RepMaestro: scalable repeat detection on disk-based genome sequences.
    Askitis N; Sinha R
    Bioinformatics; 2010 Oct; 26(19):2368-74. PubMed ID: 20663848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes.
    Martin DM; Berriman M; Barton GJ
    BMC Bioinformatics; 2004 Nov; 5():178. PubMed ID: 15550167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satellog: a database for the identification and prioritization of satellite repeats in disease association studies.
    Missirlis PI; Mead CL; Butland SL; Ouellette BF; Devon RS; Leavitt BR; Holt RA
    BMC Bioinformatics; 2005 Jun; 6():145. PubMed ID: 15949044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved repeat identification and masking in Dipterans.
    Smith CD; Edgar RC; Yandell MD; Smith DR; Celniker SE; Myers EW; Karpen GH
    Gene; 2007 Mar; 389(1):1-9. PubMed ID: 17137733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets.
    Buisine N; Quesneville H; Colot V
    Genomics; 2008 May; 91(5):467-75. PubMed ID: 18343092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated de novo identification of repeat sequence families in sequenced genomes.
    Bao Z; Eddy SR
    Genome Res; 2002 Aug; 12(8):1269-76. PubMed ID: 12176934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.