These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15961468)

  • 1. Improved detection of DNA motifs using a self-organized clustering of familial binding profiles.
    Mahony S; Golden A; Smith TJ; Benos PV
    Bioinformatics; 2005 Jun; 21 Suppl 1():i283-91. PubMed ID: 15961468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organizing neural networks to support the discovery of DNA-binding motifs.
    Mahony S; Benos PV; Smith TJ; Golden A
    Neural Netw; 2006; 19(6-7):950-62. PubMed ID: 16839740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor binding site identification using the self-organizing map.
    Mahony S; Hendrix D; Golden A; Smith TJ; Rokhsar DS
    Bioinformatics; 2005 May; 21(9):1807-14. PubMed ID: 15647296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D; Livesay DR
    BMC Bioinformatics; 2005 May; 6():116. PubMed ID: 15890082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches.
    Romer KA; Kayombya GR; Fraenkel E
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W217-20. PubMed ID: 17584794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining ChIP-chip data for transcription factor and cofactor binding sites.
    Smith AD; Sumazin P; Das D; Zhang MQ
    Bioinformatics; 2005 Jun; 21 Suppl 1():i403-12. PubMed ID: 15961485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BioOptimizer: a Bayesian scoring function approach to motif discovery.
    Jensen ST; Liu JS
    Bioinformatics; 2004 Jul; 20(10):1557-64. PubMed ID: 14962923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conservative parametric approach to motif significance analysis.
    Keich U; Ng P
    Genome Inform; 2007; 19():61-72. PubMed ID: 18546505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic motif discovery algorithm for sequential data.
    Jensen KL; Styczynski MP; Rigoutsos I; Stephanopoulos GN
    Bioinformatics; 2006 Jan; 22(1):21-8. PubMed ID: 16257985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel methods for predicting protein-protein interactions.
    Ben-Hur A; Noble WS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i38-46. PubMed ID: 15961482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FOOTER: a web tool for finding mammalian DNA regulatory regions using phylogenetic footprinting.
    Corcoran DL; Feingold E; Benos PV
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W442-6. PubMed ID: 15980508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apples to apples: improving the performance of motif finders and their significance analysis in the Twilight Zone.
    Ng P; Nagarajan N; Jones N; Keich U
    Bioinformatics; 2006 Jul; 22(14):e393-401. PubMed ID: 16873498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPACER: identification of cis-regulatory elements with non-contiguous critical residues.
    Chakravarty A; Carlson JM; Khetani RS; DeZiel CE; Gross RH
    Bioinformatics; 2007 Apr; 23(8):1029-31. PubMed ID: 17470480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A motif-based framework for recognizing sequence families.
    Sharan R; Myers EW
    Bioinformatics; 2005 Jun; 21 Suppl 1():i387-93. PubMed ID: 15961483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STOP: searching for transcription factor motifs using gene expression.
    Hertzberg L; Izraeli S; Domany E
    Bioinformatics; 2007 Jul; 23(14):1737-43. PubMed ID: 17488754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.