These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1287 related articles for article (PubMed ID: 15961478)

  • 1. De novo identification of repeat families in large genomes.
    Price AL; Jones NC; Pevzner PA
    Bioinformatics; 2005 Jun; 21 Suppl 1():i351-8. PubMed ID: 15961478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated de novo identification of repeat sequence families in sequenced genomes.
    Bao Z; Eddy SR
    Genome Res; 2002 Aug; 12(8):1269-76. PubMed ID: 12176934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads.
    Lam KK; LaButti K; Khalak A; Tse D
    Bioinformatics; 2015 Oct; 31(19):3207-9. PubMed ID: 26040454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NemaFootPrinter: a web based software for the identification of conserved non-coding genome sequence regions between C. elegans and C. briggsae.
    Rambaldi D; Guffanti A; Morandi P; Cassata G
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S22. PubMed ID: 16351749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HomologMiner: looking for homologous genomic groups in whole genomes.
    Hou M; Berman P; Hsu CH; Harris RS
    Bioinformatics; 2007 Apr; 23(8):917-25. PubMed ID: 17308341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PILER: identification and classification of genomic repeats.
    Edgar RC; Myers EW
    Bioinformatics; 2005 Jun; 21 Suppl 1():i152-8. PubMed ID: 15961452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo repeat classification and fragment assembly.
    Pevzner PA; Tang H; Tesler G
    Genome Res; 2004 Sep; 14(9):1786-96. PubMed ID: 15342561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A consistency-based consensus algorithm for de novo and reference-guided sequence assembly of short reads.
    Rausch T; Koren S; Denisov G; Weese D; Emde AK; Döring A; Reinert K
    Bioinformatics; 2009 May; 25(9):1118-24. PubMed ID: 19269990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RepLong: de novo repeat identification using long read sequencing data.
    Guo R; Li YR; He S; Ou-Yang L; Sun Y; Zhu Z
    Bioinformatics; 2018 Apr; 34(7):1099-1107. PubMed ID: 29126180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAP: a new computer program for de novo identification of repeated sequences in whole genomes.
    Campagna D; Romualdi C; Vitulo N; Del Favero M; Lexa M; Cannata N; Valle G
    Bioinformatics; 2005 Mar; 21(5):582-8. PubMed ID: 15374857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence repetitiveness quantification and de novo repeat detection by weighted k-mer coverage.
    Feng C; Dai M; Liu Y; Chen M
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. phRAIDER: Pattern-Hunter based Rapid Ab Initio Detection of Elementary Repeats.
    Schaeffer CE; Figueroa ND; Liu X; Karro JE
    Bioinformatics; 2016 Jun; 32(12):i209-i215. PubMed ID: 27307619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads.
    Novák P; Neumann P; Pech J; Steinhaisl J; Macas J
    Bioinformatics; 2013 Mar; 29(6):792-3. PubMed ID: 23376349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.
    Girgis HZ
    BMC Bioinformatics; 2015 Jul; 16():227. PubMed ID: 26206263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying repeat domains in large genomes.
    Zhi D; Raphael BJ; Price AL; Tang H; Pevzner PA
    Genome Biol; 2006; 7(1):R7. PubMed ID: 16507140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved approach for reconstructing consensus repeats from short sequence reads.
    Chu C; Pei J; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):566. PubMed ID: 30367582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated comparative analysis of 17 complete microbial genomes.
    Bansal AK
    Bioinformatics; 1999 Nov; 15(11):900-8. PubMed ID: 10743556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WindowMasker: window-based masker for sequenced genomes.
    Morgulis A; Gertz EM; Schäffer AA; Agarwala R
    Bioinformatics; 2006 Jan; 22(2):134-41. PubMed ID: 16287941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences.
    Hane JK; Oliver RP
    BMC Bioinformatics; 2008 Nov; 9():478. PubMed ID: 19014496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of repeat structure in large genomes using repeat probability clouds.
    Gu W; Castoe TA; Hedges DJ; Batzer MA; Pollock DD
    Anal Biochem; 2008 Sep; 380(1):77-83. PubMed ID: 18541131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.