These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 15961503)
1. Conservative extraction of over-represented extensible motifs. Apostolico A; Comin M; Parida L Bioinformatics; 2005 Jun; 21 Suppl 1():i9-18. PubMed ID: 15961503 [TBL] [Abstract][Full Text] [Related]
2. VARUN: discovering extensible motifs under saturation constraints. Apostolico A; Comin M; Parida L IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):752-26. PubMed ID: 21030741 [TBL] [Abstract][Full Text] [Related]
3. Fast model-based protein homology detection without alignment. Hochreiter S; Heusel M; Obermayer K Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755 [TBL] [Abstract][Full Text] [Related]
5. A generic motif discovery algorithm for sequential data. Jensen KL; Styczynski MP; Rigoutsos I; Stephanopoulos GN Bioinformatics; 2006 Jan; 22(1):21-8. PubMed ID: 16257985 [TBL] [Abstract][Full Text] [Related]
6. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Schwartz D; Gygi SP Nat Biotechnol; 2005 Nov; 23(11):1391-8. PubMed ID: 16273072 [TBL] [Abstract][Full Text] [Related]
7. Faster exact Markovian probability functions for motif occurrences: a DFA-only approach. Ribeca P; Raineri E Bioinformatics; 2008 Dec; 24(24):2839-48. PubMed ID: 18845582 [TBL] [Abstract][Full Text] [Related]
8. The SLiMDisc server: short, linear motif discovery in proteins. Davey NE; Edwards RJ; Shields DC Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W455-9. PubMed ID: 17576682 [TBL] [Abstract][Full Text] [Related]
9. Improved detection of DNA motifs using a self-organized clustering of familial binding profiles. Mahony S; Golden A; Smith TJ; Benos PV Bioinformatics; 2005 Jun; 21 Suppl 1():i283-91. PubMed ID: 15961468 [TBL] [Abstract][Full Text] [Related]
10. MUSA: a parameter free algorithm for the identification of biologically significant motifs. Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086 [TBL] [Abstract][Full Text] [Related]
14. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. Edwards RJ; Davey NE; Shields DC PLoS One; 2007 Oct; 2(10):e967. PubMed ID: 17912346 [TBL] [Abstract][Full Text] [Related]
15. Finding motifs from all sequences with and without binding sites. Leung HC; Chin FY Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937 [TBL] [Abstract][Full Text] [Related]
16. The fragment transformation method to detect the protein structural motifs. Lu CH; Lin YS; Chen YC; Yu CS; Chang SY; Hwang JK Proteins; 2006 May; 63(3):636-43. PubMed ID: 16470805 [TBL] [Abstract][Full Text] [Related]
17. A profile-based deterministic sequential Monte Carlo algorithm for motif discovery. Liang KC; Wang X; Anastassiou D Bioinformatics; 2008 Jan; 24(1):46-55. PubMed ID: 18024972 [TBL] [Abstract][Full Text] [Related]
18. RankMotif++: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors. Chen X; Hughes TR; Morris Q Bioinformatics; 2007 Jul; 23(13):i72-9. PubMed ID: 17646348 [TBL] [Abstract][Full Text] [Related]
19. A conservative parametric approach to motif significance analysis. Keich U; Ng P Genome Inform; 2007; 19():61-72. PubMed ID: 18546505 [TBL] [Abstract][Full Text] [Related]
20. A greedy strategy for finding motifs from yes-no examples. Tateishi E; Miyano S Pac Symp Biocomput; 1996; ():599-613. PubMed ID: 9390261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]