These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Evaluation of the different forces brought into play during tube foot activities in sea stars. Hennebert E; Haesaerts D; Dubois P; Flammang P J Exp Biol; 2010 Apr; 213(Pt 7):1162-74. PubMed ID: 20228353 [TBL] [Abstract][Full Text] [Related]
3. Micro- and nanostructure of the adhesive material secreted by the tube feet of the sea star Asterias rubens. Hennebert E; Viville P; Lazzaroni R; Flammang P J Struct Biol; 2008 Oct; 164(1):108-18. PubMed ID: 18625322 [TBL] [Abstract][Full Text] [Related]
4. Morphology and tenacity of the tube foot disc of three common European sea urchin species: a comparative study. Santos R; Flammang P Biofouling; 2006; 22(3-4):187-200. PubMed ID: 17290863 [TBL] [Abstract][Full Text] [Related]
5. Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). Santos R; Haesaerts D; Jangoux M; Flammang P J Morphol; 2005 Mar; 263(3):259-69. PubMed ID: 15549719 [TBL] [Abstract][Full Text] [Related]
6. The tube feet of sea urchins and sea stars contain functionally different mutable collagenous tissues. Santos R; Haesaerts D; Jangoux M; Flammang P J Exp Biol; 2005 Jun; 208(Pt 12):2277-88. PubMed ID: 15939770 [TBL] [Abstract][Full Text] [Related]
7. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. Gorb E; Kastner V; Peressadko A; Arzt E; Gaume L; Rowe N; Gorb S J Exp Biol; 2004 Aug; 207(Pt 17):2947-63. PubMed ID: 15277550 [TBL] [Abstract][Full Text] [Related]
8. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus. Toubarro D; Gouveia A; Ribeiro RM; Simões N; da Costa G; Cordeiro C; Santos R Mar Biotechnol (NY); 2016 Jun; 18(3):372-83. PubMed ID: 27194026 [TBL] [Abstract][Full Text] [Related]
9. Is the adhesive material secreted by sea urchin tube feet species-specific? Santos R; Flammang P J Morphol; 2012 Jan; 273(1):40-8. PubMed ID: 21845730 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the attachment strength of individuals of Asterina gibbosa (Asteroidea, Echinodermata) during the perimetamorphic period. Haesaerts D; Finlay JA; Callow ME; Callow JA; Grosjean P; Jangoux M; Flammang P Biofouling; 2005; 21(5-6):229-35. PubMed ID: 16522536 [TBL] [Abstract][Full Text] [Related]
11. Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Wolff JO; Gorb SN J Exp Biol; 2012 Jan; 215(Pt 1):179-84. PubMed ID: 22162866 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach. Lebesgue N; da Costa G; Ribeiro RM; Ribeiro-Silva C; Martins GG; Matranga V; Scholten A; Cordeiro C; Heck AJ; Santos R J Proteomics; 2016 Apr; 138():61-71. PubMed ID: 26926440 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Hennebert E; Wattiez R; Waite JH; Flammang P Biofouling; 2012; 28(3):289-303. PubMed ID: 22439774 [TBL] [Abstract][Full Text] [Related]
14. Biorobotic adhesion in water using suction cups. Bandyopadhyay PR; Hrubes JD; Leinhos HA Bioinspir Biomim; 2008 Mar; 3():016003. PubMed ID: 18364562 [TBL] [Abstract][Full Text] [Related]
15. Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. Flammang P; Santos R; Haesaerts D Prog Mol Subcell Biol; 2005; 39():201-20. PubMed ID: 17152699 [TBL] [Abstract][Full Text] [Related]
16. Substratum roughness alters the growth, area, and focal adhesions of epithelial cells, and their proximity to titanium surfaces. Baharloo B; Textor M; Brunette DM J Biomed Mater Res A; 2005 Jul; 74(1):12-22. PubMed ID: 15924301 [TBL] [Abstract][Full Text] [Related]
17. Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. Voigt D; Schuppert JM; Dattinger S; Gorb SN J Insect Physiol; 2008 May; 54(5):765-76. PubMed ID: 18387627 [TBL] [Abstract][Full Text] [Related]
18. Attachment to challenging substrates--fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). Ditsche P; Wainwright DK; Summers AP J Exp Biol; 2014 Jul; 217(Pt 14):2548-54. PubMed ID: 25031458 [TBL] [Abstract][Full Text] [Related]
19. Plasticity in fluctuating hydrodynamic conditions: tube foot regeneration in sea urchins. Narvaez CA; Moura AJ; Scutella DF; Cucchiara JP; Stark AY; Russell MP J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35044457 [TBL] [Abstract][Full Text] [Related]
20. Adhesive and frictional properties of tarsal attachment pads in two species of stick insects (Phasmatodea) with smooth and nubby euplantulae. Busshardt P; Wolf H; Gorb SN Zoology (Jena); 2012 Jun; 115(3):135-41. PubMed ID: 22578997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]