These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 15961747)

  • 21. Freeze tolerance in an arctic Alaska stonefly.
    Walters KR; Sformo T; Barnes BM; Duman JG
    J Exp Biol; 2009 Jan; 212(Pt 2):305-12. PubMed ID: 19112150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development, survival and reproduction of black citrus aphid, Toxoptera aurantii (Hemiptera: Aphididae), as a function of temperature.
    Wang JJ; Tsai JH
    Bull Entomol Res; 2001 Dec; 91(6):477-87. PubMed ID: 11818043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of precocene II on fatty acid metabolism in the pea aphid, Acyrthosiphon pisum, under cold stress.
    Chen Z; Madden RD; Dillwith JW
    J Insect Physiol; 2005 Apr; 51(4):411-6. PubMed ID: 15890184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells.
    Lee RE; Damodaran K; Yi SX; Lorigan GA
    Cryobiology; 2006 Jun; 52(3):459-63. PubMed ID: 16626678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Walking speed adaptation ability of Myzus persicae to different temperature conditions.
    Alford L; Hughes GE; Blackburn TM; Bale JS
    Bull Entomol Res; 2012 Jun; 102(3):303-13. PubMed ID: 22123410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyperthermic aphids: insights into behaviour and mortality.
    Hazell SP; Neve BP; Groutides C; Douglas AE; Blackburn TM; Bale JS
    J Insect Physiol; 2010 Feb; 56(2):123-31. PubMed ID: 19737571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae).
    Chidawanyika F; Terblanche JS
    J Insect Physiol; 2011 Jan; 57(1):108-17. PubMed ID: 20933517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions.
    Le MQ; Engelsberger WR; Hincha DK
    Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae).
    Saeidi F; Moharramipour S; Barzegar M
    Environ Entomol; 2012 Dec; 41(6):1638-43. PubMed ID: 23321113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life stages of an aphid living under similar thermal conditions differ in thermal performance.
    Zhao F; Hoffmann AA; Xing K; Ma CS
    J Insect Physiol; 2017 May; 99():1-7. PubMed ID: 28283383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
    Milton CC; Partridge L
    J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci.
    Wang H; Lei Z; Li X; Oetting RD
    Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial function in seasonal acclimatization versus latitudinal adaptation to cold in the lugworm Arenicola marina (L.).
    Sommer AM; Pörtner HO
    Physiol Biochem Zool; 2004; 77(2):174-86. PubMed ID: 15095238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis.
    Michaud MR; Denlinger DL
    J Insect Physiol; 2006 Oct; 52(10):1073-82. PubMed ID: 16997319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius).
    Rissanen E; Tranberg HK; Sollid J; Nilsson GE; Nikinmaa M
    J Exp Biol; 2006 Mar; 209(Pt 6):994-1003. PubMed ID: 16513925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae).
    Terblanche JS; Sinclair BJ; Jaco Klok C; McFarlane ML; Chown SL
    J Insect Physiol; 2005 Sep; 51(9):1013-23. PubMed ID: 15955537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis.
    Li A; Denlinger DL
    Insect Mol Biol; 2008 Sep; 17(5):565-72. PubMed ID: 18828842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study on effects of normal versus elevated temperatures during preimaginal and young adult period on body weight and fat body content of mature Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae).
    Krengel S; Stangl GI; Brandsch C; Freier B; Klose T; Moll E; Kiowsi A
    Environ Entomol; 2012 Jun; 41(3):676-87. PubMed ID: 22732627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.