These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15961895)

  • 1. Uptake and transport of calcium in plants.
    Yang HQ; Jie YL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Jun; 31(3):227-34. PubMed ID: 15961895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion distribution measured by electron probe X-ray microanalysis in apoplastic and symplastic pathways in root cells in sunflower plants grown in saline medium.
    Ebrahimi R; Bhatla SC
    J Biosci; 2012 Sep; 37(4):713-21. PubMed ID: 22922196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathways of calcium movement to the xylem.
    White PJ
    J Exp Bot; 2001 May; 52(358):891-9. PubMed ID: 11432906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water uptake by roots: effects of water deficit.
    Steudle E
    J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Exogenous zeatin accumulation in wheat root cells shows its role in regulation of cytokinin transport].
    Akhiiarova GR; Arkhipova TN
    Tsitologiia; 2010; 52(12):1024-30. PubMed ID: 21427982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
    Li B; Kamiya T; Kalmbach L; Yamagami M; Yamaguchi K; Shigenobu S; Sawa S; Danku JM; Salt DE; Geldner N; Fujiwara T
    Curr Biol; 2017 Mar; 27(5):758-765. PubMed ID: 28238658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium delivery and storage in plant leaves: exploring the link with water flow.
    Gilliham M; Dayod M; Hocking BJ; Xu B; Conn SJ; Kaiser BN; Leigh RA; Tyerman SD
    J Exp Bot; 2011 Apr; 62(7):2233-50. PubMed ID: 21511913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abscisic acid in the xylem: where does it come from, where does it go to?
    Hartung W; Sauter A; Hose E
    J Exp Bot; 2002 Jan; 53(366):27-32. PubMed ID: 11741037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Ca2+ fluxes to the root xylem be sustained by Ca2+-ATPases in exodermal and endodermal plasma membranes?
    Hayter ML; Peterson CA
    Plant Physiol; 2004 Dec; 136(4):4318-25. PubMed ID: 15531711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.
    Peuke AD
    J Exp Bot; 2010 Mar; 61(3):635-55. PubMed ID: 20032109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.
    Xu L; Niu J; Li C; Zhang F
    J Integr Plant Biol; 2009 Jul; 51(7):689-97. PubMed ID: 19566647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+ transport in plants.
    Apse MP; Blumwald E
    FEBS Lett; 2007 May; 581(12):2247-54. PubMed ID: 17459382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+) -dependent plant response to Pb(2+) is regulated by LCT1.
    Wojas S; RuszczyƄska A; Bulska E; Wojciechowski M; Antosiewicz DM
    Environ Pollut; 2007 Jun; 147(3):584-92. PubMed ID: 17140712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium absorption and transportation pathways in plants.
    Song Y; Jin L; Wang X
    Int J Phytoremediation; 2017 Feb; 19(2):133-141. PubMed ID: 27409403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal.
    Jiang F; Hartung W
    J Exp Bot; 2008; 59(1):37-43. PubMed ID: 17595196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glycine max xylem sap and apoplast proteome.
    Djordjevic MA; Oakes M; Li DX; Hwang CH; Hocart CH; Gresshoff PM
    J Proteome Res; 2007 Sep; 6(9):3771-9. PubMed ID: 17696379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass.
    Van der Vliet L; Peterson C; Hale B
    J Exp Bot; 2007; 58(11):2939-47. PubMed ID: 17804431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion transport in seminal and adventitious roots of cereals during O2 deficiency.
    Colmer TD; Greenway H
    J Exp Bot; 2011 Jan; 62(1):39-57. PubMed ID: 20847100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow.
    Gong HJ; Randall DP; Flowers TJ
    Plant Cell Environ; 2006 Oct; 29(10):1970-9. PubMed ID: 16930322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.