These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15962271)

  • 1. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery.
    Meng J; Kong H; Xu HY; Song L; Wang CY; Xie SS
    J Biomed Mater Res A; 2005 Aug; 74(2):208-14. PubMed ID: 15962271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Studies on the blood compatibility of the polyurethane/nano-sized carbon composite].
    Xu HY; Kong H; Lin CY; Li BY
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2002 Apr; 24(2):114-7. PubMed ID: 12905785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis.
    Meng J; Kong H; Han Z; Wang C; Zhu G; Xie S; Xu H
    J Biomed Mater Res A; 2009 Jan; 88(1):105-16. PubMed ID: 18260129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and biocompatibility evaluation of polyurethane filled with multiwalled carbon nanotubes.
    Meng J; Cheng X; Kong H; Yang M; Xu H
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1467-71. PubMed ID: 23646662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alkyl grafting on surface properties and blood compatibility of polyurethane block copolymers.
    Grasel TG; Pierce JA; Cooper SL
    J Biomed Mater Res; 1987 Jul; 21(7):815-42. PubMed ID: 3611144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets.
    Ge JJ; Hou H; Li Q; Graham MJ; Greiner A; Reneker DH; Harris FW; Cheng SZ
    J Am Chem Soc; 2004 Dec; 126(48):15754-61. PubMed ID: 15571398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and mechanical properties of chitosan/carbon nanotubes composites.
    Wang SF; Shen L; Zhang WD; Tong YJ
    Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and microwave absorbing properties of carbon-filled polyurethane.
    Kucerová Z; Zajícková L; Bursíková V; Kudrle V; Eliás M; Jasek O; Synek P; Matejková J; Bursík J
    Micron; 2009 Jan; 40(1):70-3. PubMed ID: 18653351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The haemocompatibility of polyurethane-hyaluronic acid copolymers.
    Xu F; Nacker JC; Crone WC; Masters KS
    Biomaterials; 2008 Jan; 29(2):150-60. PubMed ID: 17936354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of single-walled carbon nanotubes on the functions of plasma proteins and potentials in vascular prostheses.
    Meng J; Song L; Xu H; Kong H; Wang C; Guo X; Xie S
    Nanomedicine; 2005 Jun; 1(2):136-42. PubMed ID: 17292070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Chen Z; Cheng S; Li Z; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No platelet can adhere--largely improved blood compatibility on nanostructured superhydrophobic surfaces.
    Sun T; Tan H; Han D; Fu Q; Jiang L
    Small; 2005 Oct; 1(10):959-63. PubMed ID: 17193377
    [No Abstract]   [Full Text] [Related]  

  • 13. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.
    Tan D; Liu L; Li Z; Fu Q
    J Biomed Mater Res A; 2015 Aug; 103(8):2711-9. PubMed ID: 25630300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon coatings for cardiovascular applications: physico-chemical properties and blood compatibility.
    Fedel M; Motta A; Maniglio D; Migliaresi C
    J Biomater Appl; 2010 Jul; 25(1):57-74. PubMed ID: 19726529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts.
    Verdejo R; Jell G; Safinia L; Bismarck A; Stevens MM; Shaffer MS
    J Biomed Mater Res A; 2009 Jan; 88(1):65-73. PubMed ID: 18260133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein adsorption and platelet adhesion onto ion-containing polyurethanes.
    Alibeik S; Sheardown H; Rizkalla AS; Mequanint K
    J Biomater Sci Polym Ed; 2007; 18(9):1195-210. PubMed ID: 17931508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials.
    Milner KR; Snyder AJ; Siedlecki CA
    J Biomed Mater Res A; 2006 Mar; 76(3):561-70. PubMed ID: 16278867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends.
    Tan J; Brash JL
    J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy.
    Gao C; Jin YZ; Kong H; Whitby RL; Acquah SF; Chen GY; Qian H; Hartschuh A; Silva SR; Henley S; Fearon P; Kroto HW; Walton DR
    J Phys Chem B; 2005 Jun; 109(24):11925-32. PubMed ID: 16852469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.