These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Defective Function of the Blood-Brain Barrier in a Stroke-Prone Spontaneously Hypertensive Rat: Evaluation in an In Vitro Cell Culture Model. Nakagawa S; Ohara H; Niwa M; Yamagata K; Nabika T Cell Mol Neurobiol; 2022 Jan; 42(1):243-253. PubMed ID: 32648236 [TBL] [Abstract][Full Text] [Related]
43. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Abbott NJ; Dolman DE; Drndarski S; Fredriksson SM Methods Mol Biol; 2012; 814():415-30. PubMed ID: 22144323 [TBL] [Abstract][Full Text] [Related]
44. [The neurovascular unit in health and ischemic stroke]. Ago T Nihon Rinsho; 2016 Apr; 74(4):583-8. PubMed ID: 27333744 [TBL] [Abstract][Full Text] [Related]
45. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Gurnik S; Devraj K; Macas J; Yamaji M; Starke J; Scholz A; Sommer K; Di Tacchio M; Vutukuri R; Beck H; Mittelbronn M; Foerch C; Pfeilschifter W; Liebner S; Peters KG; Plate KH; Reiss Y Acta Neuropathol; 2016 May; 131(5):753-73. PubMed ID: 26932603 [TBL] [Abstract][Full Text] [Related]
46. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model. Xu L; Dan M; Shao A; Cheng X; Zhang C; Yokel RA; Takemura T; Hanagata N; Niwa M; Watanabe D Int J Nanomedicine; 2015; 10():6105-18. PubMed ID: 26491287 [TBL] [Abstract][Full Text] [Related]
47. Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. Vandenhaute E; Dehouck L; Boucau MC; Sevin E; Uzbekov R; Tardivel M; Gosselet F; Fenart L; Cecchelli R; Dehouck MP Curr Neurovasc Res; 2011 Nov; 8(4):258-69. PubMed ID: 22023614 [TBL] [Abstract][Full Text] [Related]
48. Neurovascular unit: a focus on pericytes. Sá-Pereira I; Brites D; Brito MA Mol Neurobiol; 2012 Apr; 45(2):327-47. PubMed ID: 22371274 [TBL] [Abstract][Full Text] [Related]
49. An in vitro self-organized three-dimensional model of the blood-brain barrier microvasculature. Agathe F; Yasuhiro N; Yukari SM; Tomomi F; Kaoru S; Matsusaki M Biomed Mater; 2020 Dec; 16(1):015006. PubMed ID: 33331293 [TBL] [Abstract][Full Text] [Related]
50. Radial Glia-endothelial Cells' Bidirectional Interactions Control Vascular Maturation and Astrocyte Differentiation: Impact for Blood-brain Barrier Formation. da Silva SM; Campos GD; Gomes FCA; Stipursky J Curr Neurovasc Res; 2019; 16(4):291-300. PubMed ID: 31633476 [TBL] [Abstract][Full Text] [Related]
51. Astrocyte-Endotheliocyte Axis in the Regulation of the Blood-Brain Barrier. Pivoriūnas A; Verkhratsky A Neurochem Res; 2021 Oct; 46(10):2538-2550. PubMed ID: 33961207 [TBL] [Abstract][Full Text] [Related]
52. Morphofunctional aspects of the blood-brain barrier. Nico B; Ribatti D Curr Drug Metab; 2012 Jan; 13(1):50-60. PubMed ID: 22292807 [TBL] [Abstract][Full Text] [Related]
53. Partial recovery of the damaged rat blood-brain barrier is mediated by adherens junction complexes, extracellular matrix remodeling and macrophage infiltration following focal astrocyte loss. Willis CL; Camire RB; Brule SA; Ray DE Neuroscience; 2013 Oct; 250():773-85. PubMed ID: 23845748 [TBL] [Abstract][Full Text] [Related]
54. [Progress in the study of the blood-brain barrier]. Xu B; Zhang Y; DU JL Sheng Li Xue Bao; 2016 Jun; 68(3):306-22. PubMed ID: 27350204 [TBL] [Abstract][Full Text] [Related]
55. Developing a transwell millifluidic device for studying blood-brain barrier endothelium. Harding IC; O'Hare NR; Vigliotti M; Caraballo A; Lee CI; Millican K; Herman IM; Ebong EE Lab Chip; 2022 Nov; 22(23):4603-4620. PubMed ID: 36326069 [TBL] [Abstract][Full Text] [Related]
56. Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown. Yamazaki Y; Baker DJ; Tachibana M; Liu CC; van Deursen JM; Brott TG; Bu G; Kanekiyo T Stroke; 2016 Apr; 47(4):1068-77. PubMed ID: 26883501 [TBL] [Abstract][Full Text] [Related]
57. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Wolburg H; Noell S; Wolburg-Buchholz K; Mack A; Fallier-Becker P Neuroscientist; 2009 Apr; 15(2):180-93. PubMed ID: 19307424 [TBL] [Abstract][Full Text] [Related]
58. Organization of Endothelial Cells, Pericytes, and Astrocytes into a 3D Microfluidic in Vitro Model of the Blood-Brain Barrier. Wang JD; Khafagy el-S; Khanafer K; Takayama S; ElSayed ME Mol Pharm; 2016 Mar; 13(3):895-906. PubMed ID: 26751280 [TBL] [Abstract][Full Text] [Related]
59. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1. Hawkins BT; Grego S; Sellgren KL Brain Res; 2015 May; 1608():167-76. PubMed ID: 25721792 [TBL] [Abstract][Full Text] [Related]
60. Development of a human in vitro blood-brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Deligne C; Hachani J; Duban-Deweer S; Meignan S; Leblond P; Carcaboso AM; Sano Y; Shimizu F; Kanda T; Gosselet F; Dehouck MP; Mysiorek C Fluids Barriers CNS; 2020 Jun; 17(1):37. PubMed ID: 32487241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]