These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15962954)

  • 1. On the nature of carbon-hydrogen bond activation at rhodium and related reactions.
    Jones WD
    Inorg Chem; 2005 Jun; 44(13):4475-84. PubMed ID: 15962954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales.
    Clot E; Eisenstein O; Jasim N; Macgregor SA; McGrady JE; Perutz RN
    Acc Chem Res; 2011 May; 44(5):333-48. PubMed ID: 21410234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of C-F and C-H bond activation by zerovalent ni and pt: a density functional study.
    Reinhold M; McGrady JE; Perutz RN
    J Am Chem Soc; 2004 Apr; 126(16):5268-76. PubMed ID: 15099111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release.
    Alcaraz G; Grellier M; Sabo-Etienne S
    Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope effects in C-H bond activation reactions by transition metals.
    Jones WD
    Acc Chem Res; 2003 Feb; 36(2):140-6. PubMed ID: 12589699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic C-H activation by metal-superoxo intermediates.
    Bollinger JM; Krebs C
    Curr Opin Chem Biol; 2007 Apr; 11(2):151-8. PubMed ID: 17374503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal-catalyzed carbon-carbon bond activation.
    Jun CH
    Chem Soc Rev; 2004 Nov; 33(9):610-8. PubMed ID: 15592626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sigma-CAM Mechanism: sigma complexes as the basis of sigma-bond metathesis at late-transition-metal centers.
    Perutz RN; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2007; 46(15):2578-92. PubMed ID: 17380532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.
    To CT; Chan KS
    Acc Chem Res; 2017 Jul; 50(7):1702-1711. PubMed ID: 28609611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity in the oxidative addition of C-S bonds of substituted thiophenes to the (C5Me5)Rh(PMe3) fragment: a comparison of theory with experiment.
    Ateşin TA; Jones WD
    Inorg Chem; 2008 Dec; 47(23):10889-94. PubMed ID: 18959365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations.
    Li CJ
    Acc Chem Res; 2009 Feb; 42(2):335-44. PubMed ID: 19220064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb).
    Pandey KK; Lledós A
    Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical examination of C-CN and C-H bond activations of acetonitrile using zerovalent nickel.
    Ateşin TA; Li T; Lachaize S; Brennessel WW; García JJ; Jones WD
    J Am Chem Soc; 2007 Jun; 129(24):7562-9. PubMed ID: 17521188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected intermediates and products in the C-F bond activation of tetrafluorobenzenes with a bis(triethylphosphine)nickel synthon: direct evidence of a rapid and reversible C-H bond activation by Ni(0).
    Johnson SA; Huff CW; Mustafa F; Saliba M
    J Am Chem Soc; 2008 Dec; 130(51):17278-80. PubMed ID: 19049278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal-carbon complexes. A theoretical study.
    Krapp A; Pandey KK; Frenking G
    J Am Chem Soc; 2007 Jun; 129(24):7596-610. PubMed ID: 17530845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of a rhodium(I) σ-alkane complex in the solid state.
    Pike SD; Thompson AL; Algarra AG; Apperley DC; Macgregor SA; Weller AS
    Science; 2012 Sep; 337(6102):1648-51. PubMed ID: 22923436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and exploiting C-H bond activation.
    Labinger JA; Bercaw JE
    Nature; 2002 May; 417(6888):507-14. PubMed ID: 12037558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes.
    Boller TM; Murphy JM; Hapke M; Ishiyama T; Miyaura N; Hartwig JF
    J Am Chem Soc; 2005 Oct; 127(41):14263-78. PubMed ID: 16218621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the involvement of 5f orbitals in the bonding and reactivity of organometallic actinide compounds: thorium(IV) and uranium(IV) bis(hydrazonato) complexes.
    Cantat T; Graves CR; Jantunen KC; Burns CJ; Scott BL; Schelter EJ; Morris DE; Hay PJ; Kiplinger JL
    J Am Chem Soc; 2008 Dec; 130(51):17537-51. PubMed ID: 19053455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.