These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 15962987)
1. Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. Razavet M; Artero V; Fontecave M Inorg Chem; 2005 Jun; 44(13):4786-95. PubMed ID: 15962987 [TBL] [Abstract][Full Text] [Related]
2. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. Baffert C; Artero V; Fontecave M Inorg Chem; 2007 Mar; 46(5):1817-24. PubMed ID: 17269760 [TBL] [Abstract][Full Text] [Related]
3. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model. Surawatanawong P; Hall MB Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518 [TBL] [Abstract][Full Text] [Related]
4. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen. Kadish KM; Shen J; Frémond L; Chen P; El Ojaimi M; Chkounda M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S; Guilard R Inorg Chem; 2008 Aug; 47(15):6726-37. PubMed ID: 18582035 [TBL] [Abstract][Full Text] [Related]
5. Carbene-pyridine chelating 2Fe2S hydrogenase model complexes as highly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Duan L; Wang M; Li P; Na Y; Wang N; Sun L Dalton Trans; 2007 Apr; (13):1277-83. PubMed ID: 17372642 [TBL] [Abstract][Full Text] [Related]
6. Role of protonation and of axial ligands in the reductive dechlorination of alkyl chlorides by vitamin B12 complexes. Reductive cleavage of chloroacetonitrile by Co(I) cobalamins and cobinamides. Argüello JE; Costentin C; Griveau S; Savéant JM J Am Chem Soc; 2005 Apr; 127(14):5049-55. PubMed ID: 15810839 [TBL] [Abstract][Full Text] [Related]
7. Cobaloxime-based artificial hydrogenases. Bacchi M; Berggren G; Niklas J; Veinberg E; Mara MW; Shelby ML; Poluektov OG; Chen LX; Tiede DM; Cavazza C; Field MJ; Fontecave M; Artero V Inorg Chem; 2014 Aug; 53(15):8071-82. PubMed ID: 25029381 [TBL] [Abstract][Full Text] [Related]
8. Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution. Solis BH; Hammes-Schiffer S J Am Chem Soc; 2011 Nov; 133(47):19036-9. PubMed ID: 22032414 [TBL] [Abstract][Full Text] [Related]
9. Electroreduction of aromatic oximes: diprotonation, adsorption, imine formation, and substituent effects. Celik H; Ekmekci G; Ludvík J; Pícha J; Zuman P J Phys Chem B; 2006 Apr; 110(13):6785-96. PubMed ID: 16570986 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts. Dempsey JL; Winkler JR; Gray HB J Am Chem Soc; 2010 Jan; 132(3):1060-5. PubMed ID: 20043639 [TBL] [Abstract][Full Text] [Related]
11. Self-assembly and heterogeneous electron transfer properties of metallo-octacarboxyphthalocyanine complexes on gold electrode. Agboola BO; Ozoemena KI Phys Chem Chem Phys; 2008 May; 10(17):2399-408. PubMed ID: 18414731 [TBL] [Abstract][Full Text] [Related]
12. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754 [TBL] [Abstract][Full Text] [Related]
13. Molybdenum-sulfur dimers as electrocatalysts for the production of hydrogen at low overpotentials. Appel AM; DuBois DL; DuBois MR J Am Chem Soc; 2005 Sep; 127(36):12717-26. PubMed ID: 16144422 [TBL] [Abstract][Full Text] [Related]
14. Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation. Felton GA; Glass RS; Lichtenberger DL; Evans DH Inorg Chem; 2006 Nov; 45(23):9181-4. PubMed ID: 17083215 [TBL] [Abstract][Full Text] [Related]
15. Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase. Jones AK; Lamle SE; Pershad HR; Vincent KA; Albracht SP; Armstrong FA J Am Chem Soc; 2003 Jul; 125(28):8505-14. PubMed ID: 12848556 [TBL] [Abstract][Full Text] [Related]
16. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations. Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644 [TBL] [Abstract][Full Text] [Related]
17. Homogeneous solvation controlled photoreduction of cobalt(III) complexes in aqueous 2-methyl-2-propanol solutions linear solvation energy relationship and cyclic voltammetric analyses. Anbalagan K; Lydia IS Spectrochim Acta A Mol Biomol Spectrosc; 2008 Mar; 69(3):964-70. PubMed ID: 17698408 [TBL] [Abstract][Full Text] [Related]
18. Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. Morris AJ; McGibbon RT; Bocarsly AB ChemSusChem; 2011 Feb; 4(2):191-6. PubMed ID: 21328550 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis and functionality-dependent electrochemistry of Fe-only hydrogenase mimics. Si G; Wang WG; Wang HY; Tung CH; Wu LZ Inorg Chem; 2008 Sep; 47(18):8101-11. PubMed ID: 18710214 [TBL] [Abstract][Full Text] [Related]
20. Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system. Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K J Am Chem Soc; 2008 Mar; 130(10):3181-97. PubMed ID: 18284242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]