These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 15963365)
1. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Parrish ZD; Banks MK; Schwab AP Environ Pollut; 2005 Sep; 137(2):187-97. PubMed ID: 15963365 [TBL] [Abstract][Full Text] [Related]
2. Study of PAH dissipation and phytoremediation in soils: comparing freshly spiked with weathered soil from a former coking works. Smith MJ; Flowers TH; Duncan HJ; Saito H J Hazard Mater; 2011 Sep; 192(3):1219-25. PubMed ID: 21742434 [TBL] [Abstract][Full Text] [Related]
3. Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. Olson PE; Castro A; Joern M; DuTeau NM; Pilon-Smits EA; Reardon KF J Environ Qual; 2007; 36(5):1461-9. PubMed ID: 17766825 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation. Cofield N; Banks MK; Schwab AP Environ Pollut; 2007 Jan; 145(1):60-7. PubMed ID: 16806619 [TBL] [Abstract][Full Text] [Related]
5. Lability of polycyclic aromatic hydrocarbons in the rhizosphere. Cofield N; Banks MK; Schwab AP Chemosphere; 2008 Feb; 70(9):1644-52. PubMed ID: 17900653 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of polycyclic aromatic hydrocarbons in manufactured gas plant-impacted soil. Spriggs T; Banks MK; Schwab P J Environ Qual; 2005; 34(5):1755-62. PubMed ID: 16151227 [TBL] [Abstract][Full Text] [Related]
7. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Euliss K; Ho CH; Schwab AP; Rock S; Banks MK Bioresour Technol; 2008 Apr; 99(6):1961-71. PubMed ID: 17531475 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants. Cofield N; Schwab AP; Banks MK Int J Phytoremediation; 2007; 9(5):355-70. PubMed ID: 18246723 [TBL] [Abstract][Full Text] [Related]
9. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Liu R; Xiao N; Wei S; Zhao L; An J Sci Total Environ; 2014 Mar; 473-474():350-8. PubMed ID: 24374595 [TBL] [Abstract][Full Text] [Related]
10. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Sabaté J; Viñas M; Solanas AM Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226 [TBL] [Abstract][Full Text] [Related]
11. Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Hickman ZA; Swindell AL; Allan IJ; Rhodes AH; Hare R; Semple KT; Reid BJ Environ Pollut; 2008 Dec; 156(3):1041-5. PubMed ID: 18554759 [TBL] [Abstract][Full Text] [Related]
12. Individual and combined effects of cadmium and polycyclic aromatic hydrocarbons on the phytoremediation potential of Xanthium sibiricum in co-contaminated soil. Jeelani N; Yang W; Qiao Y; Li J; An S; Leng X Int J Phytoremediation; 2018 Jul; 20(8):773-779. PubMed ID: 29775102 [TBL] [Abstract][Full Text] [Related]
13. Variation in soil aggregate-size distribution affects the dissipation of polycyclic aromatic hydrocarbons in long-term field-contaminated soils. Wei R; Ni J; Chen W; Yang Y Environ Sci Pollut Res Int; 2017 Oct; 24(28):22332-22339. PubMed ID: 28801893 [TBL] [Abstract][Full Text] [Related]
14. Growth and Phytoremediation Efficiency of Winged Bean in Fluorene- and Pyrene-Contaminated Soil. Chouychai W; Swangying T; Somtrakoon K; Lee H Bull Environ Contam Toxicol; 2018 Nov; 101(5):631-636. PubMed ID: 30368575 [TBL] [Abstract][Full Text] [Related]
15. Long-term willows phytoremediation treatment of soil contaminated by fly ash polycyclic aromatic hydrocarbons from straw combustion. Košnář Z; Mercl F; Tlustoš P Environ Pollut; 2020 Sep; 264():114787. PubMed ID: 32559881 [TBL] [Abstract][Full Text] [Related]
16. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Muratova A; Hūbner T; Tischer S; Turkovskaya O; Möder M; Kuschk P Int J Phytoremediation; 2003; 5(2):137-51. PubMed ID: 12929496 [TBL] [Abstract][Full Text] [Related]
17. Differential responses of eubacterial, Mycobacterium, and Sphingomonas communities in polycyclic aromatic hydrocarbon (PAH)-contaminated soil to artificially induced changes in PAH profile. Uyttebroek M; Spoden A; Ortega-Calvo JJ; Wouters K; Wattiau P; Bastiaens L; Springael D J Environ Qual; 2007; 36(5):1403-11. PubMed ID: 17766819 [TBL] [Abstract][Full Text] [Related]
18. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil. Košnář Z; Mercl F; Tlustoš P Ecotoxicol Environ Saf; 2018 May; 153():16-22. PubMed ID: 29407733 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Parrish ZD; Banks MK; Schwab AP Int J Phytoremediation; 2004; 6(2):119-37. PubMed ID: 15328979 [TBL] [Abstract][Full Text] [Related]
20. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Joner EJ; Leyval C Environ Sci Technol; 2003 Jun; 37(11):2371-5. PubMed ID: 12831019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]