These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15963369)

  • 41. Treatment of mine drainage using permeable reactive barrers: column experiments.
    Waybrant KR; Ptacek CJ; Blowes DW
    Environ Sci Technol; 2002 Mar; 36(6):1349-56. PubMed ID: 11944692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.
    Mulopo J; Zvimba JN; Swanepoel H; Bologo LT; Maree J
    Water Sci Technol; 2012; 65(2):324-31. PubMed ID: 22233912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 'Active' filters for upgrading phosphorus removal from pond systems.
    Shilton A; Pratt S; Drizo A; Mahmood B; Banker S; Billings L; Glenny S; Luo D
    Water Sci Technol; 2005; 51(12):111-6. PubMed ID: 16114672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Desorption rate of volatile compounds in polishing ponds.
    Alves EM; Cavalcanti PF; van Haandel A
    Water Sci Technol; 2011; 63(6):1177-82. PubMed ID: 21436553
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.
    Laus R; Geremias R; Vasconcelos HL; Laranjeira MC; Fávere VT
    J Hazard Mater; 2007 Oct; 149(2):471-4. PubMed ID: 17499431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.
    Yetilmezsoy K; Sakar S
    J Hazard Mater; 2008 Mar; 151(2-3):547-58. PubMed ID: 17643817
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lime enhanced chromium removal in advanced integrated wastewater pond system.
    Tadesse I; Isoaho SA; Green FB; Puhakka JA
    Bioresour Technol; 2006 Mar; 97(4):529-34. PubMed ID: 15963717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Processes controlling the variations of pH, alkalinity, and CO2 partial pressure in the porewater of coal ash disposal site.
    Kim K; Kim SH; Park SM; Kim J; Choi M
    J Hazard Mater; 2010 Sep; 181(1-3):74-81. PubMed ID: 20627567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Treatment of spentwash using chemically modified bagasse and colour removal studies.
    Mane JD; Modi S; Nagawade S; Phadnis SP; Bhandari VM
    Bioresour Technol; 2006 Sep; 97(14):1752-5. PubMed ID: 16330208
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Treatment of combined acid mine drainage (AMD)--flotation circuit effluents from copper mine via Fenton's process.
    Mahiroglu A; Tarlan-Yel E; Sevimli MF
    J Hazard Mater; 2009 Jul; 166(2-3):782-7. PubMed ID: 19147282
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorus removal from wastewater by mineral apatite.
    Bellier N; Chazarenc F; Comeau Y
    Water Res; 2006 Aug; 40(15):2965-71. PubMed ID: 16828841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of chitosan microspheres as remedial material for acidity and iron (III) contents of coal mining wastewaters.
    Fávere VT; Laus R; Laranjeira MC; Martins AO; Pedrosa RC
    Environ Technol; 2004 Aug; 25(8):861-6. PubMed ID: 15366552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural pretreatment and passive remediation of highly polluted acid mine drainage.
    Macías F; Caraballo MA; Nieto JM; Rötting TS; Ayora C
    J Environ Manage; 2012 Aug; 104():93-100. PubMed ID: 22484707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production.
    Hylander LD; Kietlińska A; Renman G; Simán G
    Bioresour Technol; 2006 May; 97(7):914-21. PubMed ID: 15964189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioassessment of a combined chemical-biological treatment for synthetic acid mine drainage.
    Pagnanelli F; De Michelis I; Di Muzio S; Ferella F; Vegliò F
    J Hazard Mater; 2008 Nov; 159(2-3):567-73. PubMed ID: 18394799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulfate removal from waste chemicals by precipitation.
    Benatti CT; Tavares CR; Lenzi E
    J Environ Manage; 2009 Jan; 90(1):504-11. PubMed ID: 18222593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessing the sustainability of acid mine drainage (AMD) treatment in South Africa.
    Masindi V; Chatzisymeon E; Kortidis I; Foteinis S
    Sci Total Environ; 2018 Sep; 635():793-802. PubMed ID: 29710603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.