BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 15963456)

  • 21. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association.
    Yu J; Branton D
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3891-5. PubMed ID: 1069273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles.
    Gerritsen WJ; Verkleij AJ; Van Deenen LL
    Biochim Biophys Acta; 1979 Jul; 555(1):26-41. PubMed ID: 476098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles.
    Gerritsen WJ; Verkley AJ; Zwaal RF; Van Deenen LL
    Eur J Biochem; 1978 Apr; 85(1):255-61. PubMed ID: 639819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ultrastructural localization of tri-n-butyltin in human erythrocyte membranes during shape transformation leading to hemolysis.
    Porvaznik M; Gray BH; Mattie D; Jackson AG; Omlor RE
    Lab Invest; 1986 Mar; 54(3):254-67. PubMed ID: 2419664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases.
    Harper PE; Mannock DA; Lewis RN; McElhaney RN; Gruner SM
    Biophys J; 2001 Nov; 81(5):2693-706. PubMed ID: 11606282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure of detergent-resistant membrane vesicles from rat brain cells.
    Chen X; Jayne Lawrence M; Barlow DJ; Morris RJ; Heenan RK; Quinn PJ
    Biochim Biophys Acta; 2009 Feb; 1788(2):477-83. PubMed ID: 19118517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes.
    Himbert S; Alsop RJ; Rose M; Hertz L; Dhaliwal A; Moran-Mirabal JM; Verschoor CP; Bowdish DM; Kaestner L; Wagner C; Rheinstädter MC
    Sci Rep; 2017 Jan; 7():39661. PubMed ID: 28045119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of miltefosine with the lipid and protein components of the erythrocyte membrane.
    Moreira RA; Mendanha SA; Hansen D; Alonso A
    J Pharm Sci; 2013 May; 102(5):1661-9. PubMed ID: 23457073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructure of hemoglobin-depleted human erythrocyte resealed ghosts.
    Ting-Beall HP; Costello MJ; Shoemaker D; Holland VF
    Biochim Biophys Acta; 1981 Feb; 640(3):807-11. PubMed ID: 7213706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of filipin-sterol complex distribution in intact erythrocytes and intramembrane particle-aggregated ghost membranes.
    Brown D; Montesano R; Orci L
    J Histochem Cytochem; 1982 Jul; 30(7):702-6. PubMed ID: 7108195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. (10.5 A)-1 diffraction and transmembrane proteins of erythrocyte ghost membranes.
    Lesslauer W
    Biochim Biophys Acta; 1980 Jul; 600(1):108-16. PubMed ID: 7397163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes.
    Gordon LM; Mobley PW
    J Membr Biol; 1984; 79(1):75-86. PubMed ID: 6330365
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct visualization of the action of Triton X-100 on giant vesicles of erythrocyte membrane lipids.
    Casadei BR; Domingues CC; de Paula E; Riske KA
    Biophys J; 2014 Jun; 106(11):2417-25. PubMed ID: 24896120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-ray and neutron scattering density profiles of the intact human red blood cell membrane.
    McCaughan L; Krimm S
    Science; 1980 Mar; 207(4438):1481-3. PubMed ID: 7361101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes.
    Deák R; Mihály J; Szigyártó IC; Wacha A; Lelkes G; Bóta A
    Colloids Surf B Biointerfaces; 2015 Nov; 135():225-234. PubMed ID: 26255166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase behavior of the major lipids of tetrahymena ciliary membranes.
    Ferguson KA; Hui SW; Stewart TP; Yeagle PL
    Biochim Biophys Acta; 1982 Jan; 684(2):179-86. PubMed ID: 6798999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase.
    Quinn PJ
    Biochim Biophys Acta; 2009 Oct; 1788(10):2267-76. PubMed ID: 19576168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase separations of alpha-tocopherol in aqueous dispersions of distearoylphosphatidylethanolamine.
    Wang X; Quinn PJ
    Chem Phys Lipids; 2002 Jan; 114(1):1-9. PubMed ID: 11841821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.