These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15963587)

  • 1. Role of proprioceptive information in movement programming and control in 5 to 11-year old children.
    Hay L; Bard C; Ferrel C; Olivier I; Fleury M
    Hum Mov Sci; 2005 Apr; 24(2):139-54. PubMed ID: 15963587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of forward models for hand localization and movement control in 6- to 10-year-old children.
    Contreras-Vidal JL
    Hum Mov Sci; 2006 Oct; 25(4-5):634-45. PubMed ID: 17011659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repetitive pointing to remembered proprioceptive targets improves 3D hand positioning accuracy.
    Barden JM; Balyk R; James Raso V; Moreau M; Bagnall K
    Hum Mov Sci; 2005 Apr; 24(2):184-205. PubMed ID: 15936836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous sensorimotor integration in adults who stutter: a tendon vibration study.
    Loucks TM; De Nil LF
    Neurosci Lett; 2006 Jul; 402(1-2):195-200. PubMed ID: 16698179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular proprioception contributes to the control of interceptive actions.
    Bastin J; Calvin S; Montagne G
    J Exp Psychol Hum Percept Perform; 2006 Aug; 32(4):964-72. PubMed ID: 16846291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of exercise-induced fatigue versus intertrial tendon vibration on visual-proprioceptive weighting for goal-directed movement.
    Manzone DM; Tremblay L
    J Neurophysiol; 2020 Sep; 124(3):802-814. PubMed ID: 32755335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement adaptations in 7- to 10-year-old typically developing children: evidence for a transition in feedback-based motor control.
    Van Braeckel K; Butcher PR; Geuze RH; Stremmelaar EF; Bouma A
    Hum Mov Sci; 2007 Dec; 26(6):927-42. PubMed ID: 17904673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online movement control in multiple sclerosis patients with tremor: effects of tendon vibration.
    Feys P; Helsen WF; Verschueren S; Swinnen SP; Klok I; Lavrysen A; Nuttin B; Ketelaer P; Liu X
    Mov Disord; 2006 Aug; 21(8):1148-53. PubMed ID: 16700031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioceptive control of goal-directed movements in man, studied by means of vibratory muscle tendon stimulation.
    Redon C; Hay L; Velay JL
    J Mot Behav; 1991 Jun; 23(2):101-8. PubMed ID: 14766521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between body movement adaptation to calf and neck muscle vibratory proprioceptive stimulation.
    Gomez S; Patel M; Magnusson M; Johansson L; Einarsson EJ; Fransson PA
    Gait Posture; 2009 Jul; 30(1):93-9. PubMed ID: 19398340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.
    Roll JP; Albert F; Thyrion C; Ribot-Ciscar E; Bergenheim M; Mattei B
    J Neurophysiol; 2009 Feb; 101(2):816-23. PubMed ID: 19052107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of upper limb proprioceptive accuracy in children and adolescents.
    Goble DJ; Lewis CA; Hurvitz EA; Brown SH
    Hum Mov Sci; 2005 Apr; 24(2):155-70. PubMed ID: 16043248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprioception plays a different role for sensorimotor adaptation to different distortions.
    Bock O; Thomas M
    Hum Mov Sci; 2011 Jun; 30(3):415-23. PubMed ID: 21256612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of wrist joint kinematics by the ensemble of muscle spindles from synergistic muscles.
    Verschueren SM; Cordo PJ; Swinnen SP
    J Neurophysiol; 1998 May; 79(5):2265-76. PubMed ID: 9582203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticipatory postural adjustments associated with a forward leg raising in children: effects of age, segmental acceleration and sensory context.
    Palluel E; Ceyte H; Olivier I; Nougier V
    Clin Neurophysiol; 2008 Nov; 119(11):2546-54. PubMed ID: 18789757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disrupted cortical proprioceptive representation evokes symptoms of peculiarity, foreignness and swelling, but not pain.
    Moseley GL; McCormick K; Hudson M; Zalucki N
    Rheumatology (Oxford); 2006 Feb; 45(2):196-200. PubMed ID: 16377731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Parkinson's disease and dopaminergic medication on proprioceptive processing.
    Mongeon D; Blanchet P; Messier J
    Neuroscience; 2009 Jan; 158(2):426-40. PubMed ID: 18996173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.