BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15963619)

  • 1. Handling of contamination variability in exposure assessment: a case study with ochratoxin A.
    Counil E; Verger P; Volatier JL
    Food Chem Toxicol; 2005 Oct; 43(10):1541-55. PubMed ID: 15963619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical methodology to evaluate food exposure to a contaminant and influence of sanitary limits: application to Ochratoxin A.
    Tressou J; Leblanc JCh; Feinberg M; Bertail P
    Regul Toxicol Pharmacol; 2004 Dec; 40(3):252-63. PubMed ID: 15546679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some recent advances in modelling dietary exposure to ochratoxin A.
    Verger P; Counil E; Tressou J; Leblanc JC
    Food Addit Contam; 2005; 22 Suppl 1():94-8. PubMed ID: 16332627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative risk assessment relating to adventitious presence of allergens in food: a probabilistic model applied to peanut in chocolate.
    Rimbaud L; Heraud F; La Vieille S; Leblanc JC; Crepet A
    Risk Anal; 2010 Jan; 30(1):7-19. PubMed ID: 20002890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of uncertainty and interindividual variability in human exposure modeling.
    Ragas AM; Brouwer FP; Büchner FL; Hendriks HW; Huijbregts MA
    J Expo Sci Environ Epidemiol; 2009 Feb; 19(2):201-12. PubMed ID: 18398446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study on the use of probabilistic migration modeling in support of exposure assessment from food contact materials.
    Poças MF; Oliveira JC; Brandsch R; Hogg T
    Risk Anal; 2010 Jul; 30(7):1052-61. PubMed ID: 20409038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Establishment of non-parametric probabilistic model for evaluation of Chinese dietary exposure].
    Sun JF; Liu P; Chen BW; Chen QG; Yu XJ; Wang CN; Li JX
    Zhonghua Yu Fang Yi Xue Za Zhi; 2010 Mar; 44(3):195-9. PubMed ID: 20450738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative risk assessment of thermophilic Campylobacter spp. and cross-contamination during handling of raw broiler chickens evaluating strategies at the producer level to reduce human campylobacteriosis in Sweden.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2008 Jan; 121(1):41-52. PubMed ID: 18037525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of probabilistic exposure assessment and probabilistic hazard characterization.
    van der Voet H; Slob W
    Risk Anal; 2007 Apr; 27(2):351-71. PubMed ID: 17511703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative risk assessment of Listeria monocytogenes in French cold-smoked salmon: I. Quantitative exposure assessment.
    Pouillot R; Miconnet N; Afchain AL; Delignette-Muller ML; Beaufort A; Rosso L; Denis JB; Cornu M
    Risk Anal; 2007 Jun; 27(3):683-700. PubMed ID: 17640216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food: an example with organophosphorus pesticides.
    Bosgra S; van der Voet H; Boon PE; Slob W
    Regul Toxicol Pharmacol; 2009 Jul; 54(2):124-33. PubMed ID: 19303907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations in health risk assessment.
    Biesiada M
    Int J Occup Med Environ Health; 2001; 14(4):397-402. PubMed ID: 11885924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM; Kan-King-Yu D; Blackburn Cde W
    Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A probabilistic effect assessment model for hazardous substances at the workplace.
    Schneider K; Schuhmacher-Wolz U; Hassauer M; Darschnik S; Elmshäuser E; Mosbach-Schulz O
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):172-81. PubMed ID: 16356615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity analysis of a two-dimensional quantitative microbiological risk assessment: keeping variability and uncertainty separated.
    Busschaert P; Geeraerd AH; Uyttendaele M; Van Impe JF
    Risk Anal; 2011 Aug; 31(8):1295-307. PubMed ID: 21418082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic estimation of dietary exposure of the general Japanese population to dioxins in fish, using region-specific fish monitoring data.
    Cao H; Suzuki N; Sakurai T; Matsuzaki K; Shiraishi H; Morita M
    J Expo Sci Environ Epidemiol; 2008 May; 18(3):236-45. PubMed ID: 18059428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic modeling of young children's overall lead exposure in France: integrated approach for various exposure media.
    Glorennec P; Bemrah N; Tard A; Robin A; Le Bot B; Bard D
    Environ Int; 2007 Oct; 33(7):937-45. PubMed ID: 17573113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitness-for-purpose of dietary survey duration: a case-study with the assessment of exposure to ochratoxin A.
    Counil E; Verger P; Volatier JL
    Food Chem Toxicol; 2006 Apr; 44(4):499-509. PubMed ID: 16223553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.