BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 15963737)

  • 1. Novel visual stimuli activate a population of neurons in the primate orbitofrontal cortex.
    Rolls ET; Browning AS; Inoue K; Hernadi I
    Neurobiol Learn Mem; 2005 Sep; 84(2):111-23. PubMed ID: 15963737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological Signatures of Visual Recognition Memory across All Layers of Mouse V1.
    Hayden DJ; Finnie PSB; Thomazeau A; Li AY; Cooke SF; Bear MF
    J Neurosci; 2023 Nov; 43(44):7307-7321. PubMed ID: 37714707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex.
    Rolls ET; Critchley HD; Browning AS; Hernadi I; Lenard L
    J Neurosci; 1999 Feb; 19(4):1532-40. PubMed ID: 9952429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural coding of reward magnitude in the orbitofrontal cortex of the rat during a five-odor olfactory discrimination task.
    van Duuren E; Escámez FA; Joosten RN; Visser R; Mulder AB; Pennartz CM
    Learn Mem; 2007 Jun; 14(6):446-56. PubMed ID: 17562896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal representation of visual working memory content in the primate primary visual cortex.
    Huang J; Wang T; Dai W; Li Y; Yang Y; Zhang Y; Wu Y; Zhou T; Xing D
    Sci Adv; 2024 Jun; 10(24):eadk3953. PubMed ID: 38875332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progressive neuronal plasticity in primate visual cortex during stimulus familiarization.
    Koyano KW; Esch EM; Hong JJ; Waidmann EN; Wu H; Leopold DA
    Sci Adv; 2023 Mar; 9(12):eade4648. PubMed ID: 36961903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.
    Van Le Q; Isbell LA; Matsumoto J; Nguyen M; Hori E; Maior RS; Tomaz C; Tran AH; Ono T; Nishijo H
    Proc Natl Acad Sci U S A; 2013 Nov; 110(47):19000-5. PubMed ID: 24167268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated passive visual experience modulates spontaneous and non-familiar stimuli-evoked neural activity.
    Niraula S; Hauser WL; Rouse AG; Subramanian J
    Sci Rep; 2023 Nov; 13(1):20907. PubMed ID: 38017135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological signatures of visual recognition memory across all layers of mouse V1.
    Hayden DJ; Finnie PSB; Thomazeau A; Li AY; Cooke SF; Bear MF
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated passive visual experience modulates spontaneous and non-familiar stimulievoked neural activity.
    Niraula S; Hauser WL; Rouse AG; Subramanian J
    bioRxiv; 2023 Aug; ():. PubMed ID: 36865208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered hierarchical auditory predictive processing after lesions to the orbitofrontal cortex.
    Asko O; Blenkmann AO; Leske SL; Foldal MD; LLorens A; Funderud I; Meling TR; Knight RT; Endestad T; Solbakk AK
    Elife; 2024 Feb; 13():. PubMed ID: 38334469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala.
    Rolls ET
    Brain Struct Funct; 2023 Jun; 228(5):1201-1257. PubMed ID: 37178232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain.
    Sabra Z; Alawieh A; Bonilha L; Naselaris T; AuYong N
    Front Hum Neurosci; 2022; 16():886938. PubMed ID: 36277048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Neural Correlates of Double Decision Performance in Older Adults.
    Kraft JN; O'Shea A; Albizu A; Evangelista ND; Hausman HK; Boutzoukas E; Nissim NR; Van Etten EJ; Bharadwaj PK; Song H; Smith SG; Porges E; DeKosky S; Hishaw GA; Wu S; Marsiske M; Cohen R; Alexander GE; Woods AJ
    Front Aging Neurosci; 2020; 12():278. PubMed ID: 33117145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Pass Processing of Value Cues in the Ventral Visual Pathway.
    Sasikumar D; Emeric E; Stuphorn V; Connor CE
    Curr Biol; 2018 Feb; 28(4):538-548.e3. PubMed ID: 29429619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbitofrontal Cortex and the Early Processing of Visual Novelty in Healthy Aging.
    Kaufman DA; Keith CM; Perlstein WM
    Front Aging Neurosci; 2016; 8():101. PubMed ID: 27199744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-pathway hypothesis for human visual fear signaling.
    Silverstein DN; Ingvar M
    Front Syst Neurosci; 2015; 9():101. PubMed ID: 26379513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing facial attractiveness: individual decisions and evolutionary constraints.
    Kocsor F; Feldmann A; Bereczkei T; Kállai J
    Socioaffect Neurosci Psychol; 2013; 3():21432. PubMed ID: 24693356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain structure links trait creativity to openness to experience.
    Li W; Li X; Huang L; Kong X; Yang W; Wei D; Li J; Cheng H; Zhang Q; Qiu J; Liu J
    Soc Cogn Affect Neurosci; 2015 Feb; 10(2):191-8. PubMed ID: 24603022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual predictions in the orbitofrontal cortex rely on associative content.
    Chaumon M; Kveraga K; Barrett LF; Bar M
    Cereb Cortex; 2014 Nov; 24(11):2899-907. PubMed ID: 23771980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.