BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15963938)

  • 1. Synthesis and characterization of fluorescent ubiquitin derivatives as highly sensitive substrates for the deubiquitinating enzymes UCH-L3 and USP-2.
    Tirat A; Schilb A; Riou V; Leder L; Gerhartz B; Zimmermann J; Worpenberg S; Eidhoff U; Freuler F; Stettler T; Mayr L; Ottl J; Leuenberger B; Filipuzzi I
    Anal Biochem; 2005 Aug; 343(2):244-55. PubMed ID: 15963938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate.
    Hassiepen U; Eidhoff U; Meder G; Bulber JF; Hein A; Bodendorf U; Lorthiois E; Martoglio B
    Anal Biochem; 2007 Dec; 371(2):201-7. PubMed ID: 17869210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes).
    Drag M; Mikolajczyk J; Bekes M; Reyes-Turcu FE; Ellman JA; Wilkinson KD; Salvesen GS
    Biochem J; 2008 Nov; 415(3):367-75. PubMed ID: 18601651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC; Melandri FD; Stein RL
    Biochemistry; 1998 Feb; 37(7):1868-79. PubMed ID: 9485312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.
    Bett JS; Ritorto MS; Ewan R; Jaffray EG; Virdee S; Chin JW; Knebel A; Kurz T; Trost M; Tatham MH; Hay RT
    Biochem J; 2015 Mar; 466(3):489-98. PubMed ID: 25489924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential role of ubiquitin c-terminal hydrolases in oncogenesis.
    Fang Y; Fu D; Shen XZ
    Biochim Biophys Acta; 2010 Aug; 1806(1):1-6. PubMed ID: 20302916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting deubiquitinases enabled by chemical synthesis of proteins.
    Ohayon S; Spasser L; Aharoni A; Brik A
    J Am Chem Soc; 2012 Feb; 134(6):3281-9. PubMed ID: 22279964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains.
    Sato Y; Yoshikawa A; Yamagata A; Mimura H; Yamashita M; Ookata K; Nureki O; Iwai K; Komada M; Fukai S
    Nature; 2008 Sep; 455(7211):358-62. PubMed ID: 18758443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deubiquitinating enzyme UCH-L3 regulates the apical membrane recycling of the epithelial sodium channel.
    Butterworth MB; Edinger RS; Ovaa H; Burg D; Johnson JP; Frizzell RA
    J Biol Chem; 2007 Dec; 282(52):37885-93. PubMed ID: 17967898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes.
    Yin ST; Huang H; Zhang YH; Zhou ZR; Song AX; Hong FS; Hu HY
    Biochem Biophys Res Commun; 2011 Dec; 416(1-2):76-9. PubMed ID: 22086173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.
    Misaghi S; Galardy PJ; Meester WJ; Ovaa H; Ploegh HL; Gaudet R
    J Biol Chem; 2005 Jan; 280(2):1512-20. PubMed ID: 15531586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes.
    Schaefer JB; Morgan DO
    J Biol Chem; 2011 Dec; 286(52):45186-96. PubMed ID: 22072716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains.
    Zhou ZR; Zhang YH; Liu S; Song AX; Hu HY
    Biochem J; 2012 Jan; 441(1):143-9. PubMed ID: 21851340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic separation of ubiquitin and single amino acid residue ubiquitin extensions using a commercial modified acrylamide gel electrophoresis system: an assay to determine catalytic capacities of deubiquitinating enzymes.
    Layfield R; Hayes C; Wang P; Urquhart K; Ramage R; Mayer RJ; Landon M
    Electrophoresis; 1999 Mar; 20(3):480-2. PubMed ID: 10217157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases.
    Larsen CN; Krantz BA; Wilkinson KD
    Biochemistry; 1998 Mar; 37(10):3358-68. PubMed ID: 9521656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UCH-L3 structure and function: Insights about a promising drug target.
    Hafez N; Modather El-Awadly Z; Arafa RK
    Eur J Med Chem; 2022 Jan; 227():113970. PubMed ID: 34752952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate recognition and catalysis by UCH-L1.
    Luchansky SJ; Lansbury PT; Stein RL
    Biochemistry; 2006 Dec; 45(49):14717-25. PubMed ID: 17144664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deubiquitinating enzyme purification, assay inhibitors, and characterization.
    Russell NS; Wilkinson KD
    Methods Mol Biol; 2005; 301():207-19. PubMed ID: 15917634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, purification and enzymatic characterization of a recombinant human ubiquitin-specific protease 47.
    Piao J; Tashiro A; Nishikawa M; Aoki Y; Moriyoshi E; Hattori A; Kakeya H
    J Biochem; 2015 Dec; 158(6):477-84. PubMed ID: 26115687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway.
    van Nocker S; Vierstra RD
    J Biol Chem; 1993 Nov; 268(33):24766-73. PubMed ID: 8227036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.