These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 15964037)
1. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Requejo R; Tena M Phytochemistry; 2005 Jul; 66(13):1519-28. PubMed ID: 15964037 [TBL] [Abstract][Full Text] [Related]
2. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Requejo R; Tena M Proteomics; 2006 Apr; 6 Suppl 1():S156-62. PubMed ID: 16534746 [TBL] [Abstract][Full Text] [Related]
3. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846 [TBL] [Abstract][Full Text] [Related]
5. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Porubleva L; Vander Velden K; Kothari S; Oliver DJ; Chitnis PR Electrophoresis; 2001 May; 22(9):1724-38. PubMed ID: 11425228 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. Duquesnoy I; Champeau GM; Evray G; Ledoigt G; Piquet-Pissaloux A C R Biol; 2010; 333(11-12):814-24. PubMed ID: 21146138 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Liu Y; von Behrens I; Muthreich N; Schütz W; Nordheim A; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):236-41. PubMed ID: 19962783 [TBL] [Abstract][Full Text] [Related]
9. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. Roth U; von Roepenack-Lahaye E; Clemens S J Exp Bot; 2006; 57(15):4003-13. PubMed ID: 17075075 [TBL] [Abstract][Full Text] [Related]
10. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707 [TBL] [Abstract][Full Text] [Related]
11. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the maize (Zea mays L.) embryo proteome by RTCS which controls seminal root initiation. Muthreich N; Schützenmeister A; Schütz W; Madlung J; Krug K; Nordheim A; Piepho HP; Hochholdinger F Eur J Cell Biol; 2010; 89(2-3):242-9. PubMed ID: 19962210 [TBL] [Abstract][Full Text] [Related]
13. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Ahsan N; Lee DG; Kim KH; Alam I; Lee SH; Lee KW; Lee H; Lee BH Chemosphere; 2010 Jan; 78(3):224-31. PubMed ID: 19948354 [TBL] [Abstract][Full Text] [Related]
14. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. Yu Y; Zhang S; Huang H; Luo L; Wen B J Agric Food Chem; 2009 May; 57(9):3695-701. PubMed ID: 19296577 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Tada Y; Kashimura T Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358 [TBL] [Abstract][Full Text] [Related]
16. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Hochholdinger F; Woll K; Guo L; Schnable PS Proteomics; 2005 Dec; 5(18):4885-93. PubMed ID: 16247731 [TBL] [Abstract][Full Text] [Related]
17. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Torres NL; Cho K; Shibato J; Hirano M; Kubo A; Masuo Y; Iwahashi H; Jwa NS; Agrawal GK; Rakwal R Electrophoresis; 2007 Dec; 28(23):4369-81. PubMed ID: 17987633 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Li K; Xu C; Zhang K; Yang A; Zhang J Proteomics; 2007 May; 7(9):1501-12. PubMed ID: 17407179 [TBL] [Abstract][Full Text] [Related]
19. Comparative proteomic analysis of rice shoots exposed to high arsenate. Liu Y; Li M; Han C; Wu F; Tu B; Yang P J Integr Plant Biol; 2013 Oct; 55(10):965-78. PubMed ID: 23773616 [TBL] [Abstract][Full Text] [Related]
20. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]