BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15964647)

  • 1. Bi-phasic hitting with constraints on impact velocity and temporal precision.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Hum Mov Sci; 2005 Apr; 24(2):206-17. PubMed ID: 15964647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal precision of interceptive action: differential effects of target size and speed.
    Tresilian R; Oliver J; Carroll J
    Exp Brain Res; 2003 Feb; 148(4):425-38. PubMed ID: 12582826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generalized optic acceleration cancellation theory of catching.
    McLeod P; Reed N; Dienes Z
    J Exp Psychol Hum Percept Perform; 2006 Feb; 32(1):139-48. PubMed ID: 16478332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of goal-directed hitting: impact requirements change the information-movement coupling.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Exp Brain Res; 2004 Mar; 155(2):135-44. PubMed ID: 15010898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamical neural network for hitting an approaching object.
    Dessing JC; Caljouw SR; Peper PE; Beek PJ
    Biol Cybern; 2004 Dec; 91(6):377-87. PubMed ID: 15599591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical acceleration cancellation: a viable interception strategy?
    Rozendaal LA; van Soest AJ
    Biol Cybern; 2003 Dec; 89(6):415-25. PubMed ID: 14673653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-stability of movement coordination as a function of skill level and task difficulty.
    Liu YT; Mayer-Kress G; Newell KM
    J Exp Psychol Hum Percept Perform; 2010 Dec; 36(6):1515-24. PubMed ID: 20718559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information-movement coupling in developing cricketers under changing ecological practice constraints.
    Pinder RA; Renshaw I; Davids K
    Hum Mov Sci; 2009 Aug; 28(4):468-79. PubMed ID: 19339072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes.
    Grierson LE; Elliott D
    Hum Mov Sci; 2008 Dec; 27(6):839-56. PubMed ID: 18768232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target dimension affects 1/f noise in aiming.
    Valdez AB; Amazeen EL
    Nonlinear Dynamics Psychol Life Sci; 2009 Oct; 13(4):369-92. PubMed ID: 19781136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External timing constraints facilitate performance of everyday interceptive actions in children with Spastic Hemiparetic Cerebral Palsy.
    Ricken AX; Savelsbergh GJ; Bennett SJ
    Neurosci Lett; 2006 Dec; 410(3):187-92. PubMed ID: 17101219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EFFECTS OF SPATIAL AND TEMPORAL CONSTRAINTS ON INTERCEPTIVE AIMING TASK PERFORMANCE AND GAZE CONTROL.
    Lim J
    Percept Mot Skills; 2015 Oct; 121(2):509-27. PubMed ID: 26445153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal constraints on upright children's coordination when hitting a moving target.
    Rosey F; Keller J; Golomer E
    Infant Behav Dev; 2007 Dec; 30(4):666-78. PubMed ID: 17420054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ball impact dynamics of instep soccer kicking.
    Shinkai H; Nunome H; Isokawa M; Ikegami Y
    Med Sci Sports Exerc; 2009 Apr; 41(4):889-97. PubMed ID: 19276844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and logarithmic speed-accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics.
    Bongers RM; Fernandez L; Bootsma RJ
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1443-57. PubMed ID: 19803648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.
    Senot P; Zago M; Lacquaniti F; McIntyre J
    J Neurophysiol; 2005 Dec; 94(6):4471-80. PubMed ID: 16120661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manual interception of moving targets in two dimensions: performance and space-time accuracy.
    Tresilian JR; Plooy AM; Marinovic W
    Brain Res; 2009 Jan; 1250():202-17. PubMed ID: 19028467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.