These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15964786)

  • 1. Determinants of inspiratory activity.
    Ramirez JM; Viemari JC
    Respir Physiol Neurobiol; 2005 Jul; 147(2-3):145-57. PubMed ID: 15964786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro.
    Del Negro CA; Koshiya N; Butera RJ; Smith JC
    J Neurophysiol; 2002 Nov; 88(5):2242-50. PubMed ID: 12424266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo.
    Peña F; Aguileta MA
    Neurosci Lett; 2007 Mar; 415(3):288-93. PubMed ID: 17276002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of neurokinin receptors and ionic mechanisms within the respiratory network of the lamprey.
    Mutolo D; Bongianni F; Cinelli E; Pantaleo T
    Neuroscience; 2010 Sep; 169(3):1136-49. PubMed ID: 20540991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia.
    Peña F; Parkis MA; Tryba AK; Ramirez JM
    Neuron; 2004 Jul; 43(1):105-17. PubMed ID: 15233921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models of respiratory rhythm generation in the pre-Bötzinger complex. III. Experimental tests of model predictions.
    Del Negro CA; Johnson SM; Butera RJ; Smith JC
    J Neurophysiol; 2001 Jul; 86(1):59-74. PubMed ID: 11431488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory-like rhythmic activity can be produced by an excitatory network of non-pacemaker neuron models.
    Kosmidis EK; Pierrefiche O; Vibert JF
    J Neurophysiol; 2004 Aug; 92(2):686-99. PubMed ID: 15277592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing by raised extracellular Ca2+ of pre-Bötzinger complex neurons in newborn rat brainstem slices without change of membrane potential or input resistance.
    Panaitescu B; Ruangkittisakul A; Ballanyi K
    Neurosci Lett; 2009 May; 456(1):25-9. PubMed ID: 19429127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Midline section of the medulla abolishes inspiratory activity and desynchronizes pre-inspiratory neuron rhythm on both sides of the medulla in newborn rats.
    Onimaru H; Tsuzawa K; Nakazono Y; Janczewski WA
    J Neurophysiol; 2015 Apr; 113(7):2871-8. PubMed ID: 25717158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic trends in respiratory rhythmogenesis: insights from ectothermic vertebrates.
    Kinkead R
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):39-48. PubMed ID: 19505591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal pacemaker for breathing visualized in vitro.
    Koshiya N; Smith JC
    Nature; 1999 Jul; 400(6742):360-3. PubMed ID: 10432113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons.
    Viemari JC; Ramirez JM
    J Neurophysiol; 2006 Apr; 95(4):2070-82. PubMed ID: 16394066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiration-related rhythmic activity in the rostral medulla of newborn rats.
    Onimaru H; Kumagawa Y; Homma I
    J Neurophysiol; 2006 Jul; 96(1):55-61. PubMed ID: 16495360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro?
    Johnson SM; Wiegel LM; Majewski DJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R901-10. PubMed ID: 17522127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of bursting in respiratory pacemaker neurons.
    Tryba AK; Peña F; Ramirez JM
    J Neurosci; 2003 Apr; 23(8):3538-46. PubMed ID: 12716963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice.
    Thoby-Brisson M; Ramirez JM
    J Neurophysiol; 2001 Jul; 86(1):104-12. PubMed ID: 11431492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Na+ and Ca2+ influx into respiratory neurons during hypoxia.
    Mironov SL; Langohr K
    Neuropharmacology; 2005 Jun; 48(7):1056-65. PubMed ID: 15857632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defective interaction between dual oscillators for respiratory rhythm generation in Na+,K+-ATPase {alpha}2 subunit-deficient mice.
    Onimaru H; Ikeda K; Kawakami K
    J Physiol; 2007 Oct; 584(Pt 1):271-84. PubMed ID: 17690149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the hyperpolarization-activated current in modulating rhythmic activity in the isolated respiratory network of mice.
    Thoby-Brisson M; Telgkamp P; Ramirez JM
    J Neurosci; 2000 Apr; 20(8):2994-3005. PubMed ID: 10751452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic origin of the respiratory-modulated activity of laryngeal motoneurons.
    Ono K; Shiba K; Nakazawa K; Shimoyama I
    Neuroscience; 2006 Jul; 140(3):1079-88. PubMed ID: 16650611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.