These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 15965601)

  • 1. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys.
    Nag S; Banerjee R; Stechschulte J; Fraser HL
    J Mater Sci Mater Med; 2005 Jul; 16(7):679-85. PubMed ID: 15965601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.
    Banerjee R; Nag S; Stechschulte J; Fraser HL
    Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and properties of cast binary Ti-Mo alloys.
    Ho WF; Ju CP; Lin JH
    Biomaterials; 1999 Nov; 20(22):2115-22. PubMed ID: 10555079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible low Young's modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal.
    Lee SH; Todai M; Tane M; Hagihara K; Nakajima H; Nakano T
    J Mech Behav Biomed Mater; 2012 Oct; 14():48-54. PubMed ID: 22963746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardness and microstructure of Ti-15Mo-5Zr-3Al alloy for dental casting.
    Kochi M; Koizumi H; Murakami M; Kikuchi H; Matsumura H; Yoneyama T
    Acta Odontol Scand; 2011 Nov; 69(6):328-33. PubMed ID: 21426269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy.
    Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K
    J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and selected mechanical properties of aged Ti-15Zr-based alloys for biomedical applications.
    Correa DRN; Kuroda PAB; Lourenço ML; Buzalaf MAR; Mendoza ME; Archanjo BS; Achete CA; Rocha LA; Grandini CR
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():762-771. PubMed ID: 30033311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.
    Kuroda PAB; Buzalaf MAR; Grandini CR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nb-Ti-Zr alloys for orthopedic implants.
    Zhang T; Ou P; Ruan J; Yang H
    J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys.
    Gabriel SB; Nunes CA; Soares Gde A
    Artif Organs; 2008 Apr; 32(4):299-304. PubMed ID: 18370944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of in situ TiB reinforcements and role of heat treatment on mechanical properties and biocompatibility of β Ti-alloys.
    Majumdar P; Singh SB; Dhara S; Chakraborty M
    J Mech Behav Biomed Mater; 2012 Jun; 10():1-12. PubMed ID: 22520414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.
    Cardoso FF; Ferrandini PL; Lopes ESN; Cremasco A; Caram R
    J Mech Behav Biomed Mater; 2014 Apr; 32():31-38. PubMed ID: 24394773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and magnetic susceptibility of as-cast Zr-Mo alloys.
    Suyalatu ; Nomura N; Oya K; Tanaka Y; Kondo R; Doi H; Tsutsumi Y; Hanawa T
    Acta Biomater; 2010 Mar; 6(3):1033-8. PubMed ID: 19772932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of C content on the mechanical properties of Ti-Zr coatings.
    Rodríguez-Hernández MG; Jiménez O; Alvarado-Hernández F; Flores M; Andrade E; Canto CE; Ávila C; Espinoza-Beltrán F
    J Mech Behav Biomed Mater; 2015 Sep; 49():269-76. PubMed ID: 26056996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and properties of Ti-7.5Mo-xFe alloys.
    Lin DJ; Lin JH; Ju CP
    Biomaterials; 2002 Apr; 23(8):1723-30. PubMed ID: 11950042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.
    Yang X; Hutchinson CR
    Acta Biomater; 2016 Sep; 42():429-439. PubMed ID: 27397494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of the binary titanium-zirconium alloys and their potential for biomedical materials.
    Kobayashi E; Matsumoto S; Doi H; Yoneyama T; Hamanaka H
    J Biomed Mater Res; 1995 Aug; 29(8):943-50. PubMed ID: 7593037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.