These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

854 related articles for article (PubMed ID: 15966347)

  • 1. Prediction of energy expenditure from heart rate monitoring during submaximal exercise.
    Keytel LR; Goedecke JH; Noakes TD; Hiiloskorpi H; Laukkanen R; van der Merwe L; Lambert EV
    J Sports Sci; 2005 Mar; 23(3):289-97. PubMed ID: 15966347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VO2max estimation from a submaximal 1-mile track jog for fit college-age individuals.
    George JD; Vehrs PR; Allsen PE; Fellingham GW; Fisher AG
    Med Sci Sports Exerc; 1993 Mar; 25(3):401-6. PubMed ID: 8455458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of aerobic capacity from submaximal cycle ergometry in women.
    Hartung GH; Blancq RJ; Lally DA; Krock LP
    Med Sci Sports Exerc; 1995 Mar; 27(3):452-7. PubMed ID: 7752875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a single-stage submaximal treadmill walking test.
    Ebbeling CB; Ward A; Puleo EM; Widrick J; Rippe JM
    Med Sci Sports Exerc; 1991 Aug; 23(8):966-73. PubMed ID: 1956273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a commercial accelerometer (Tritrac-R3 D) to measure energy expenditure during ambulation.
    Sherman WM; Morris DM; Kirby TE; Petosa RA; Smith BA; Frid DJ; Leenders N
    Int J Sports Med; 1998 Jan; 19(1):43-7. PubMed ID: 9506799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a submaximal treadmill jogging test for fit college-aged individuals.
    George JD; Vehrs PR; Allsen PE; Fellingham GW; Fisher AG
    Med Sci Sports Exerc; 1993 May; 25(5):643-7. PubMed ID: 8492693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-esterified fatty acid levels and physical inactivity: the relative importance of low habitual energy expenditure and cardio-respiratory fitness.
    Franks PW; Wong MY; Luan J; Mitchell J; Hennings S; Wareham NJ
    Br J Nutr; 2002 Sep; 88(3):307-13. PubMed ID: 12207841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A short cycle ergometer test to predict maximal workload and maximal oxygen uptake.
    Arts FJ; Kuipers H; Jeukendrup AE; Saris WH
    Int J Sports Med; 1993 Nov; 14(8):460-4. PubMed ID: 8300273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerometry and heart rate as a measure of physical fitness: cross-validation.
    Plasqui G; Westerterp KR
    Med Sci Sports Exerc; 2006 Aug; 38(8):1510-4. PubMed ID: 16888467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of energy expenditure in healthy adults from the YMCA submaximal cycle ergometer test.
    Garatachea N; Cavalcanti E; García-López D; González-Gallego J; de Paz JA
    Eval Health Prof; 2007 Jun; 30(2):138-49. PubMed ID: 17476027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Components and variations in daily energy expenditure of athletic and non-athletic adolescents in free-living conditions.
    Ribeyre J; Fellmann N; Vernet J; Delaître M; Chamoux A; Coudert J; Vermorel M
    Br J Nutr; 2000 Oct; 84(4):531-9. PubMed ID: 11103224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between mean habitual daily energy expenditure and maximal oxygen uptake.
    Berthouze SE; Minaire PM; Castells J; Busso T; Vico L; Lacour JR
    Med Sci Sports Exerc; 1995 Aug; 27(8):1170-9. PubMed ID: 7476062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of physical fitness and daily energy expenditure on sleep efficiency in young and older humans.
    Oudegeest-Sander MH; Eijsvogels TH; Verheggen RJ; Poelkens F; Hopman MT; Jones H; Thijssen DH
    Gerontology; 2013; 59(1):8-16. PubMed ID: 22948012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen uptake kinetics during supra VO2max treadmill running in humans.
    Carter H; Pringle JS; Barstow TJ; Doust JH
    Int J Sports Med; 2006 Feb; 27(2):149-57. PubMed ID: 16475062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HR index--a simple method for the prediction of oxygen uptake.
    Wicks JR; Oldridge NB; Nielsen LK; Vickers CE
    Med Sci Sports Exerc; 2011 Oct; 43(10):2005-12. PubMed ID: 21364476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of VO2max from a one-mile track walk, gender, age, and body weight.
    Kline GM; Porcari JP; Hintermeister R; Freedson PS; Ward A; McCarron RF; Ross J; Rippe JM
    Med Sci Sports Exerc; 1987 Jun; 19(3):253-9. PubMed ID: 3600239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic and anaerobic energy expenditure during exhaustive ramp exercise.
    Scott CB; Bogdanffy GM
    Int J Sports Med; 1998 May; 19(4):277-80. PubMed ID: 9657369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.