These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15966348)

  • 1. Energy system contribution to 400-metre and 800-metre track running.
    Duffield R; Dawson B; Goodman C
    J Sports Sci; 2005 Mar; 23(3):299-307. PubMed ID: 15966348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy system contribution to 1500- and 3000-metre track running.
    Duffield R; Dawson B; Goodman C
    J Sports Sci; 2005 Oct; 23(10):993-1002. PubMed ID: 16194976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy system contributions in middle-distance running events.
    Hill DW
    J Sports Sci; 1999 Jun; 17(6):477-83. PubMed ID: 10404496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy system contribution to 100-m and 200-m track running events.
    Duffield R; Dawson B; Goodman C
    J Sci Med Sport; 2004 Sep; 7(3):302-13. PubMed ID: 15518295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulated oxygen deficit and short-distance running performance.
    Ramsbottom R; Nevill AM; Nevill ME; Newport S; Williams C
    J Sports Sci; 1994 Oct; 12(5):447-53. PubMed ID: 7799473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off seasonal and pre-seasonal assessment of circulating energy sources during prolonged running at the anaerobic threshold in competitive triathletes.
    Knoepfli B; Riddell MC; Ganzoni E; Burki A; Villiger B; von Duvillard SP
    Br J Sports Med; 2004 Aug; 38(4):402-7. PubMed ID: 15273171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running.
    Zouhal H; Jabbour G; Jacob C; Duvigneau D; Botcazou M; Ben Abderrahaman A; Prioux J; Moussa E
    J Strength Cond Res; 2010 Sep; 24(9):2309-15. PubMed ID: 20703164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy conversion rates during sprinting with an emphasis on the performance of female athletes.
    Ward-Smith AJ; Radford PF
    J Sports Sci; 2000 Oct; 18(10):835-43. PubMed ID: 11055819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy system contribution during 200- to 1500-m running in highly trained athletes.
    Spencer MR; Gastin PB
    Med Sci Sports Exerc; 2001 Jan; 33(1):157-62. PubMed ID: 11194103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of net anaerobic energy utilisation estimated by plasma lactate accumulation rate and accumulated oxygen deficit in Thoroughbred horses.
    Ohmura H; Mukai K; Takahashi T; Matsui A; Hiraga A; Jones JH
    Equine Vet J Suppl; 2010 Nov; (38):62-9. PubMed ID: 21058984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart rate and blood lactate in 400 m flat and 400 m hurdle running: a comparative study.
    Gupta S; Goswami A; Mukhopadhyay S
    Indian J Physiol Pharmacol; 1999 Jul; 43(3):361-6. PubMed ID: 10776485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response.
    Hanon C; Thomas C
    J Sports Sci; 2011 Jun; 29(9):905-12. PubMed ID: 21547833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak oxygen deficit predicts sprint and middle-distance track performance.
    Weyand PG; Cureton KJ; Conley DS; Sloniger MA; Liu YL
    Med Sci Sports Exerc; 1994 Sep; 26(9):1174-80. PubMed ID: 7808253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen uptake response to an 800-m running race.
    Thomas C; Hanon C; Perrey S; Le Chevalier JM; Couturier A; Vandewalle H
    Int J Sports Med; 2005 May; 26(4):268-73. PubMed ID: 15795810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of maximal anaerobic running tests on a treadmill and track.
    Nummela A; Hämäläinen I; Rusko H
    J Sports Sci; 2007 Jan; 25(1):87-96. PubMed ID: 17127584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic running capacity determined from a 3-parameter systems model: relationship with other anaerobic indices and with running performance in the 800 m-run.
    Bosquet L; Delhors PR; Duchene A; Dupont G; Leger L
    Int J Sports Med; 2007 Jun; 28(6):495-500. PubMed ID: 17541880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraindividual variation of running economy in highly trained and moderately trained males.
    Pereira MA; Freedson PS
    Int J Sports Med; 1997 Feb; 18(2):118-24. PubMed ID: 9081268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximal lactate steady state in trained adolescent runners.
    Almarwaey OA; Jones AM; Tolfrey K
    J Sports Sci; 2004 Feb; 22(2):215-25. PubMed ID: 14998099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships and significance of lactate minimum, critical velocity, heart rate deflection and 3 000 m track-tests for running.
    Simões HG; Denadai BS; Baldissera V; Campbell CS; Hill DW
    J Sports Med Phys Fitness; 2005 Dec; 45(4):441-51. PubMed ID: 16446674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.