BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15966719)

  • 1. Slow solvation dynamics at the active site of an enzyme: implications for catalysis.
    Guha S; Sahu K; Roy D; Mondal SK; Roy S; Bhattacharyya K
    Biochemistry; 2005 Jun; 44(25):8940-7. PubMed ID: 15966719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate selection by aminoacyl-tRNA synthetases.
    Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D
    Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvation dynamics of a protein in the pre molten globule state.
    Samaddar S; Mandal AK; Mondal SK; Sahu K; Bhattacharyya K; Roy S
    J Phys Chem B; 2006 Oct; 110(42):21210-5. PubMed ID: 17048947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase.
    Liu J; Ibba M; Hong KW; Söll D
    Biochemistry; 1998 Jul; 37(27):9836-42. PubMed ID: 9657697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding.
    Sathyapriya R; Vishveshwara S
    Proteins; 2007 Aug; 68(2):541-50. PubMed ID: 17444518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tertiary core rearrangements in a tight binding transfer RNA aptamer.
    Bullock TL; Sherlin LD; Perona JJ
    Nat Struct Biol; 2000 Jun; 7(6):497-504. PubMed ID: 10881199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
    Hoben P; Uemura H; Yamao F; Cheung A; Swanson R; Sumner-Smith M; Söll D
    Fed Proc; 1984 Dec; 43(15):2972-6. PubMed ID: 6389180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases.
    Balg C; Blais SP; Bernier S; Huot JL; Couture M; Lapointe J; Chênevert R
    Bioorg Med Chem; 2007 Jan; 15(1):295-304. PubMed ID: 17049867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cognate tRNA specific conformational change in glutaminyl-tRNA synthetase and its implication for specificity.
    Mandal AK; Bhattacharyya A; Bhattacharyya S; Bhattacharyya T; Roy S
    Protein Sci; 1998 Apr; 7(4):1046-51. PubMed ID: 9568911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms.
    Bahar I; Jernigan RL
    J Mol Biol; 1998 Sep; 281(5):871-84. PubMed ID: 9719641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutaminyl-tRNA synthetase.
    Freist W; Gauss DH; Ibba M; Söll D
    Biol Chem; 1997 Oct; 378(10):1103-17. PubMed ID: 9372179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination.
    Dasgupta S; Saha R; Dey C; Banerjee R; Roy S; Basu G
    FEBS Lett; 2009 Jun; 583(12):2114-20. PubMed ID: 19481543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes.
    Perona JJ; Swanson RN; Rould MA; Steitz TA; Söll D
    Science; 1989 Dec; 246(4934):1152-4. PubMed ID: 2686030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants.
    Bullock TL; Uter N; Nissan TA; Perona JJ
    J Mol Biol; 2003 Apr; 328(2):395-408. PubMed ID: 12691748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.
    Sherman JM; Thomann HU; Söll D
    J Mol Biol; 1996 Mar; 256(5):818-28. PubMed ID: 8601833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for tRNA-dependent amidotransferase function.
    Schmitt E; Panvert M; Blanquet S; Mechulam Y
    Structure; 2005 Oct; 13(10):1421-33. PubMed ID: 16216574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site assembly in glutaminyl-tRNA synthetase by tRNA-mediated induced fit.
    Uter NT; Perona JJ
    Biochemistry; 2006 Jun; 45(22):6858-65. PubMed ID: 16734422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.