BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 15966802)

  • 1. High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry.
    Qian WJ; Camp DG; Smith RD
    Expert Rev Proteomics; 2004 Jun; 1(1):87-95. PubMed ID: 15966802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics.
    Shen Y; Smith RD
    Expert Rev Proteomics; 2005 Jun; 2(3):431-47. PubMed ID: 16000088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTICR mass spectrometry for qualitative and quantitative bioanalyses.
    Page JS; Masselon CD; Smith RD
    Curr Opin Biotechnol; 2004 Feb; 15(1):3-11. PubMed ID: 15102459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements.
    Shen Y; Strittmatter EF; Zhang R; Metz TO; Moore RJ; Li F; Udseth HR; Smith RD; Unger KK; Kumar D; Lubda D
    Anal Chem; 2005 Dec; 77(23):7763-73. PubMed ID: 16316187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturized proteomics and peptidomics using capillary liquid separation and high resolution mass spectrometry.
    Ramström M; Bergquist J
    FEBS Lett; 2004 Jun; 567(1):92-5. PubMed ID: 15165899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue proteomics using capillary isoelectric focusing-based multidimensional separations.
    Wang Y; Balgley BM; Lee CS
    Expert Rev Proteomics; 2005 Oct; 2(5):659-67. PubMed ID: 16209646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes.
    Fox JW; Ma L; Nelson K; Sherman NE; Serrano SM
    Toxicon; 2006 May; 47(6):700-14. PubMed ID: 16574175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTICR mass spectrometry in proteomics.
    Bergquist J
    Curr Opin Mol Ther; 2003 Jun; 5(3):310-4. PubMed ID: 12870442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry.
    Smith RD; Pasa-Tolić L; Lipton MS; Jensen PK; Anderson GA; Shen Y; Conrads TP; Udseth HR; Harkewicz R; Belov ME; Masselon C; Veenstra TD
    Electrophoresis; 2001 May; 22(9):1652-68. PubMed ID: 11425221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analysis of Escherichia coli using high-performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry.
    Ihling C; Sinz A
    Proteomics; 2005 May; 5(8):2029-42. PubMed ID: 15852340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research.
    Ekegren T; Hanrieder J; Bergquist J
    J Mass Spectrom; 2008 May; 43(5):559-71. PubMed ID: 18416436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics by FTICR mass spectrometry: top down and bottom up.
    Bogdanov B; Smith RD
    Mass Spectrom Rev; 2005; 24(2):168-200. PubMed ID: 15389855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the influence of post-excite radius and axial confinement on quantitative proteomic measurements using Fourier transform ion cyclotron resonance mass spectrometry.
    Frahm JL; Velez CM; Muddiman DC
    Rapid Commun Mass Spectrom; 2007; 21(7):1196-204. PubMed ID: 17330212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology.
    Barrow MP; Burkitt WI; Derrick PJ
    Analyst; 2005 Jan; 130(1):18-28. PubMed ID: 15614347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheathless electrospray ionization directly from a capillary monolith for fast liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry.
    Leinweber FC; Schmid DG; Lubda D; Sontheimer B; Jung G; Tallarek U
    J Mass Spectrom; 2004 Feb; 39(2):223-5. PubMed ID: 14991693
    [No Abstract]   [Full Text] [Related]  

  • 18. Gel-free mass spectrometry-based high throughput proteomics: tools for studying biological response of proteins and proteomes.
    Roe MR; Griffin TJ
    Proteomics; 2006 Sep; 6(17):4678-87. PubMed ID: 16888762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression profiling using advanced mass spectrometric approaches.
    Pasa-Tolić L; Lipton MS; Masselon CD; Anderson GA; Shen Y; Tolić N; Smith RD
    J Mass Spectrom; 2002 Dec; 37(12):1185-98. PubMed ID: 12489076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Fourier transform ion cyclotron resonance mass spectrometry--the determination of creatinine by isotope dilution mass spectrometry.
    Bristow T; Stokes P; O'Connor G
    Rapid Commun Mass Spectrom; 2005; 19(3):375-80. PubMed ID: 15645509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.