BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15967371)

  • 1. Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase.
    Roy JJ; Abraham TE; Abhijith KS; Kumar PV; Thakur MS
    Biosens Bioelectron; 2005 Jul; 21(1):206-11. PubMed ID: 15967371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element.
    Vianello F; Cambria A; Ragusa S; Cambria MT; Zennaro L; Rigo A
    Biosens Bioelectron; 2004 Sep; 20(2):315-21. PubMed ID: 15308236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and comparison of Trametes versicolor laccase biosensors capable of detecting xenobiotics.
    Sezgintürk MK; Odaci D; Pazarlioğlu N; Pilloton R; Dinçkaya E; Telefoncu A; Timur S
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Aug; 38(4):192-9. PubMed ID: 20380615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite.
    Liu Y; Qu X; Guo H; Chen H; Liu B; Dong S
    Biosens Bioelectron; 2006 Jun; 21(12):2195-201. PubMed ID: 16384697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of laccase from the white rot fungus Trametes versicolor.
    Han MJ; Choi HT; Song HG
    J Microbiol; 2005 Dec; 43(6):555-60. PubMed ID: 16410773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An amperometric biosensor for polyphenolic compounds in red wine.
    Gomes SA; Nogueira JM; Rebelo MJ
    Biosens Bioelectron; 2004 Dec; 20(6):1211-6. PubMed ID: 15556369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerization of guaiacol and a phenolic beta-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS.
    Rittstieg K; Suurnäkki A; Suortti T; Kruus K; Guebitz GM; Buchert J
    Biotechnol Prog; 2003; 19(5):1505-9. PubMed ID: 14524712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor.
    Gamella M; Campuzano S; Reviejo AJ; Pingarrón JM
    J Agric Food Chem; 2006 Oct; 54(21):7960-7. PubMed ID: 17031995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor.
    Torrecilla JS; Mena ML; Yáñez-Sedeño P; García J
    J Agric Food Chem; 2007 Sep; 55(18):7418-26. PubMed ID: 17685539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase-based biosensor for the determination of polyphenol index in wine.
    Di Fusco M; Tortolini C; Deriu D; Mazzei F
    Talanta; 2010 Apr; 81(1-2):235-40. PubMed ID: 20188914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of mediators on the laccase biosensor response in paracetamol detection.
    Odaci D; Timur S; Pazarlioğlu N; Kirgöz UA; Telefoncu A
    Biotechnol Appl Biochem; 2006 Jul; 45(Pt 1):23-8. PubMed ID: 16608443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of three phenols by laccase polymerization with MF/UF membranes.
    Ko CH; Chen SS
    Bioresour Technol; 2008 May; 99(7):2293-8. PubMed ID: 17600703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase immobilization in redox active layered double hydroxides: a reagentless amperometric biosensor.
    Mousty C; Vieille L; Cosnier S
    Biosens Bioelectron; 2007 Mar; 22(8):1733-8. PubMed ID: 17023155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high sensitivity amperometric biosensor using laccase as biorecognition element.
    Vianello F; Ragusa S; Cambria MT; Rigo A
    Biosens Bioelectron; 2006 May; 21(11):2155-60. PubMed ID: 16293408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection.
    Othman AM; Wollenberger U
    Int J Biol Macromol; 2020 Jun; 153():855-864. PubMed ID: 32165197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol.
    Nazari M; Kashanian S; Rafipour R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():130-138. PubMed ID: 25770936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical detection of different phenolic compounds by means of a novel biosensor based on sol-gel immobilized laccase.
    Lepore M; Portaccio M
    Biotechnol Appl Biochem; 2017 Nov; 64(6):782-792. PubMed ID: 27981631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis.
    Madzak C; Mimmi MC; Caminade E; Brault A; Baumberger S; Briozzo P; Mougin C; Jolivalt C
    Protein Eng Des Sel; 2006 Feb; 19(2):77-84. PubMed ID: 16368720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.