These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15967401)

  • 1. Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: a theoretical analysis.
    Qin Y; Lai S; Jiang Y; Yang T; Wang J
    Bioelectrochemistry; 2005 Sep; 67(1):57-65. PubMed ID: 15967401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analytical model for the transmembrane voltage induced on a permeabilized cell membrane in suspensions exposed to DC pulse fields].
    Qin Y; Jiang Y; Lai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):1-4. PubMed ID: 17333880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.
    Zou Y; Wang C; Peng R; Wang L; Hu X
    Bioelectrochemistry; 2015 Apr; 102():64-72. PubMed ID: 25528063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-order model of membrane electric field induced by alternating external electric fields.
    Kotnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation.
    Ye H; Cotic M; Carlen PL
    J Neural Eng; 2007 Sep; 4(3):283-93. PubMed ID: 17873431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system.
    Pavlin M; Pavselj N; Miklavcic D
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):605-12. PubMed ID: 12046706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells.
    Maswiwat K; Wachner D; Gimsa J
    Bioelectrochemistry; 2008 Nov; 74(1):130-41. PubMed ID: 18621589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of a confined spherical cell in uniform and heterogeneous applied electric fields.
    Gowrishankar TR; Stewart DA; Weaver JC
    Bioelectrochemistry; 2006 May; 68(2):181-90. PubMed ID: 16230052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis.
    Valic B; Pavlin M; Miklavcic D
    Bioelectrochemistry; 2004 Jun; 63(1-2):311-5. PubMed ID: 15110294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells.
    Gimsa J; Wachner D
    Biophys J; 2001 Oct; 81(4):1888-96. PubMed ID: 11566763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells.
    Pucihar G; Miklavcic D; Kotnik T
    IEEE Trans Biomed Eng; 2009 May; 56(5):1491-501. PubMed ID: 19203876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Model of the response of the membrane transport system to an alternating electric field].
    Riznichenko GIu; Pliusnina TIu; Vorob'eva TN; Aksenov SI; Cherniakov GM
    Biofizika; 1993; 38(4):667-71. PubMed ID: 8364068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance.
    Gimsa J; Wachner D
    Eur Biophys J; 2001 Oct; 30(6):463-6. PubMed ID: 11718301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective conductivity of cell suspensions.
    Pavlin M; Slivnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):77-80. PubMed ID: 11794775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of transmembrane potentials on cellular inner and outer membrane--frequency response model and its filter characteristic simulation.
    Yao C; Mi Y; Li C; Hu X; Chen X; Sun C
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1792-9. PubMed ID: 18595797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method.
    Stewart DA; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1643-53. PubMed ID: 16235650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields.
    Kotnik T; Miklavcic D
    Bioelectromagnetics; 2000 Jul; 21(5):385-94. PubMed ID: 10899774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of intense, subnanosecond electrical pulse-induced transmembrane voltage in spheroidal cells with arbitrary orientation.
    Hu Q; Joshi RP
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1617-26. PubMed ID: 19258194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.