BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 15967436)

  • 1. Regulation of lens aldose reductase activity by nitric oxide.
    Srivastava S; Tammali R; Chandra D; Greer DA; Ramana KV; Bhatnagar A; Srivastava SK
    Exp Eye Res; 2005 Dec; 81(6):664-72. PubMed ID: 15967436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells.
    Ramana KV; Chandra D; Srivastava S; Bhatnagar A; Srivastava SK
    FASEB J; 2003 Mar; 17(3):417-25. PubMed ID: 12631581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical localization for aldose reductase in diabetic lenses.
    Akagi Y; Kador PF; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1987 Jan; 28(1):163-7. PubMed ID: 3100473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens.
    Collins JG; Corder CN
    Invest Ophthalmol Vis Sci; 1977 Mar; 16(3):242-3. PubMed ID: 403152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity.
    Wu D; Cederbaum A
    Toxicol Appl Pharmacol; 2006 Oct; 216(2):282-92. PubMed ID: 16938321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative importance of aldose reductase versus nonenzymatic glycosylation on sugar cataract formation in diabetic rats.
    Kador PF; Lee JW; Fujisawa S; Blessing K; Lou MF
    J Ocul Pharmacol Ther; 2000 Apr; 16(2):149-60. PubMed ID: 10803425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide prevents aldose reductase activation and sorbitol accumulation during diabetes.
    Chandra D; Jackson EB; Ramana KV; Kelley R; Srivastava SK; Bhatnagar A
    Diabetes; 2002 Oct; 51(10):3095-101. PubMed ID: 12351453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-FG as substrate for investigating flux through the polyol pathway in dog lens by 19F-NMR spectroscopy.
    Lizak MJ; Secchi EF; Lee JW; Sato S; Kubo E; Akagi Y; Kador PF
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2688-95. PubMed ID: 9856779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated Expression of indoleamine 2,3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats.
    Kanth VR; Lavanya K; Srinivas J; Raju TN
    Curr Eye Res; 2009 Apr; 34(4):274-81. PubMed ID: 19373575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of insulin on aldose reductase activity in the lens of rats with streptozotocin-induced diabetes].
    Nishigami T
    Nippon Ganka Gakkai Zasshi; 1990 Feb; 94(2):128-34. PubMed ID: 2114733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and morphological changes during development of sugar cataract in Otsuka Long-Evans Tokushima fatty (OLETF) rat.
    Kubo E; Maekawa K; Tanimoto T; Fujisawa S; Akagi Y
    Exp Eye Res; 2001 Sep; 73(3):375-81. PubMed ID: 11520112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of Ganoderma applanatum on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues.
    Jung SH; Lee YS; Shim SH; Lee S; Shin KH; Kim JS; Kim YS; Kang SS
    Phytother Res; 2005 Jun; 19(6):477-80. PubMed ID: 16114079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced nerve blood flow in diabetic rats: relationship to nitric oxide production and inhibition of aldose reductase.
    Tomlinson DR; Dewhurst M; Stevens EJ; Omawari N; Carrington AL; Vo PA
    Diabet Med; 1998 Jul; 15(7):579-85. PubMed ID: 9686698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase.
    Jedziniak JA; Chylack LT; Cheng HM; Gillis MK; Kalustian AA; Tung WH
    Invest Ophthalmol Vis Sci; 1981 Mar; 20(3):314-26. PubMed ID: 6782033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nitric oxide on proliferation and differentiation of rat brown adipocytes in primary cultures.
    Nisoli E; Clementi E; Tonello C; Sciorati C; Briscini L; Carruba MO
    Br J Pharmacol; 1998 Oct; 125(4):888-94. PubMed ID: 9831929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldose reductase prevents aldehyde toxicity in cultured human lens epithelial cells.
    Pladzyk A; Ramana KV; Ansari NH; Srivastava SK
    Exp Eye Res; 2006 Aug; 83(2):408-16. PubMed ID: 16631166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of instillation of aldose reductase inhibitor FR74366 on diabetic cataract.
    Ao S; Kikuchi C; Ono T; Notsu Y
    Invest Ophthalmol Vis Sci; 1991 Nov; 32(12):3078-83. PubMed ID: 1834606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldose reductase in early streptozotocin-induced diabetic rat lens.
    Garadi R; Lou MF
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2370-5. PubMed ID: 2509397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein inhibits aldose reductase activity and high glucose-induced TGF-beta2 expression in human lens epithelial cells.
    Kim YS; Kim NH; Jung DH; Jang DS; Lee YM; Kim JM; Kim JS
    Eur J Pharmacol; 2008 Oct; 594(1-3):18-25. PubMed ID: 18692043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.