BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15967660)

  • 1. Effect of microwave irradiated Methanosarcina barkeri DSM-804 on biomethanation.
    Banik S; Bandyopadhyay S; Ganguly S; Dan D
    Bioresour Technol; 2006 Apr; 97(6):819-23. PubMed ID: 15967660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri.
    Yi Y; Dolfing J; Jin G; Fang X; Han W; Liu L; Tang Y; Cheng L
    Water Res; 2023 Apr; 232():119664. PubMed ID: 36775717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methanogenesis from furfural by defined mixed cultures.
    Boopathy R
    Curr Microbiol; 2002 Jun; 44(6):406-10. PubMed ID: 12000990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The novel regulator HdrR controls the transcription of the heterodisulfide reductase operon
    Zhang S; Chen Y; Wang S; Yang Q; Leng H; Zhao P; Guo L; Dai L; Bai L; Cha G
    Appl Environ Microbiol; 2024 Jun; 90(6):e0069124. PubMed ID: 38809047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor.
    Stojanowic A; Hedderich R
    FEMS Microbiol Lett; 2004 Jun; 235(1):163-7. PubMed ID: 15158277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746.
    Gonnerman MC; Benedict MN; Feist AM; Metcalf WW; Price ND
    Biotechnol J; 2013 Sep; 8(9):1070-9. PubMed ID: 23420771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Formyl-5,6,7,8-tetrahydromethanopterin is the intermediate in the process of methanogenesis in Methanosarcina barkeri.
    Keltjens JT; Brugman AJ; Kesseleer JM; te Brömmelstroet BW; van der Drift C; Vogels GD
    Biofactors; 1992 Apr; 3(4):249-55. PubMed ID: 1605834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of methanogenesis by interaction of aluminium ion with co-factor, F-420, in Methanosarcina barkeri.
    Chattopadhyay BD; Thakur AR
    Indian J Exp Biol; 2003 Aug; 41(8):915-7. PubMed ID: 15248497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.
    Welander PV; Metcalf WW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10664-9. PubMed ID: 16024727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leachate from market refuse and biomethanation study.
    Mukherjee SN; Kumar S
    Environ Monit Assess; 2007 Dec; 135(1-3):49-53. PubMed ID: 17505906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assay of methylotrophic methyltransferases from methanogenic archaea.
    Ferguson DJ; Longstaff DG; Krzycki JA
    Methods Enzymol; 2011; 494():139-58. PubMed ID: 21402214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of RNA isolation from the archaebacterium Methanosarcina barkeri and validation for oligonucleotide microarray analysis.
    Culley DE; Kovacik WP; Brockman FJ; Zhang W
    J Microbiol Methods; 2006 Oct; 67(1):36-43. PubMed ID: 16631263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon isotope effects associated with aceticlastic methanogenesis.
    Gelwicks JT; Risatti JB; Hayes JM
    Appl Environ Microbiol; 1994 Feb; 60(2):467-72. PubMed ID: 11536629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H(2) metabolism between closely related species.
    Guss AM; Mukhopadhyay B; Zhang JK; Metcalf WW
    Mol Microbiol; 2005 Mar; 55(6):1671-80. PubMed ID: 15752192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Nickel Levels on Hydrogen Partial Pressure and Methane Production in Methanogens.
    Neubeck A; Sjöberg S; Price A; Callac N; Schnürer A
    PLoS One; 2016; 11(12):e0168357. PubMed ID: 27992585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture.
    Huang L; Liu X; Zhang Z; Ye J; Rensing C; Zhou S; Nealson KH
    ISME J; 2022 Feb; 16(2):370-377. PubMed ID: 34341507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme biosynthesis in Methanosarcina barkeri via a pathway involving two methylation reactions.
    Buchenau B; Kahnt J; Heinemann IU; Jahn D; Thauer RK
    J Bacteriol; 2006 Dec; 188(24):8666-8. PubMed ID: 17028275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase.
    Mand TD; Kulkarni G; Metcalf WW
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30012731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nickel, cobalt, and iron on methanogenesis from methanol and cometabolic conversion of 1,2-dichloroethene by Methanosarcina barkeri.
    Paulo LM; Hidayat MR; Moretti G; Stams AJM; Sousa DZ
    Biotechnol Appl Biochem; 2020 Sep; 67(5):744-750. PubMed ID: 32282086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.